期刊文献+

延迟决策对一类产出系统演化的影响研究 被引量:4

The Influence of the Delayed Decision on the Dynamical Evolution of a Production System
下载PDF
导出
摘要 企业作为有限理性的经济主体,在做下阶段的生产决策时可能不仅考虑本期而是要综合考虑以往连续多期的边际利润情况。研究表明,加入时滞以后,系统纳什平衡点的稳定域明显扩大,从而为在混沌经济系统中实现倍周期分岔控制提供了现实途径,同时,还会使系统在纳什平衡点出现hopf分岔等新的动力学演化行为。而且,以累积利润为指标的系统表现可以得到改善。首先引入延迟决策的企业将获得更大的相对竞争优势。而在两家企业都引入延迟决策的情况下,伴随第二家企业产量调整速度的增加,它们将交替获得竞争优势。 firms are bounded rationally in the market.So they make production decisions not only based on the marginal profit of current period but on the marginal profits of many continuous periods.The paper studies the influence of the delay on the system and finds that the stable region of Nash equilibrium is enlarged,which offers a realistic way to realize the control of the period doubling bifurcations.Meanwhile,when two parameters,adjusting speed and weighted factor,satisfy certain conditions,other complicated dynamical behaviors such as Hopf bifurcation will occur at the Nash equilibrium.Delayed decision rule can improve the system performance and has great influence on the market competition.
出处 《中国管理科学》 CSSCI 2004年第2期118-123,共6页 Chinese Journal of Management Science
关键词 生产决策 混沌 倍周期分岔 Hopt分岔 production decision chaos period doubling bifurcation Hopf bifurcation
  • 相关文献

参考文献7

  • 1H. N. Agiza,A. S. Hegazi, A. A. Elsadany. The dynamics of Bowley's model with bounded Rationality[J]. Chaos Solitons & Fractals,2001,9:1705 - 1717.
  • 2E. Ahmed, H. N. Agiza, S. Z Hassan. On modification of Puu' s dynamical duopoly model [ J ]. Chaos, Solitons & Fractals, 2000,11:1025 - 1028.
  • 3H. N. Agiza,A. S. Hegazi,A. A. Elsadany. Complex dynamics and synchronization of duopoly game with bounded rationality[ J ]. Math. Comput. Simulation, 2002, 58:133 -146.
  • 4Irma Luhta, Ilkka Virtanen. Non - linear advertising capital model with time delayed feedback between advertising and stock of goodwill[J ]. Chaos Solitons & Fractals, 1996,7:2084 - 2104.
  • 5H. O. Wang, F. H. Abed. Bifurcation control of a chaotic system[ J ]. Automatic, 1995,31:1213 - 1226.
  • 6Ott. E. , Grebogi, C., Yorke, J. A.. Controlling chaos[J ].Physics Review Letters, 1990,64:1196.
  • 7李煜,盛昭瀚,陈国华.混沌经济系统的控制优化[J].中国管理科学,2003,11(3):66-71. 被引量:4

二级参考文献9

  • 1Leo Kass. Stabilizing Chaos in a Dynamical Macroeconomic Model[J] .J.of Economic Bahavior & Organization. 1998,33:313 - 332.
  • 2V.Bala,M.Majumdar,etc.A note on controlling a chaotic tatonnement[J ]. Journal of Economic Behavior & Organization, 1998,33 : 411 - 420.
  • 3Michael Kopel. Improving the performance of an economic system: Controlling chaos[ J ]. Journal of Evolutionary Economics, 1997,7 : 269 - 289.
  • 4H.N. Agiza, A. S. Hegazi, A. A. Elsadany. The dynamics of Bowly' s model with bounded rationality [J] .Chaos, Soltions, and Fractals,2001,12 : 1705 - 1717.
  • 5Weihong Huang. Caution implies profit[J ]. Journal of Economic Behavior & Organization, 1995,27 : 257 - 277.
  • 6B. R. Hunt, E. Ott. Optimal periodic orbits of chaotic systems[J]. Physical Review Letters, 1996,76: 2254 - 2257.
  • 7T. Shinbrot, E. Ott, C. Grebogi, etc. Using chaos to direct orbits to targets in systems describable by a one - dimensional map[ J ]. Physical Review,A, 1992,45 : 4165 - 4168.
  • 8R. L Devaney.An introduction to chaotic dynamical systems, 1989,2edn,Addison Wesley, New York.
  • 9姚洪兴,盛昭瀚.一类混沌经济模型的控制方法的研究[J].管理科学学报,2001,4(4):16-21. 被引量:14

同被引文献51

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部