n个Schrodinger算子积自伴域
摘要
本文讨论了由微分算式l=-(d^2/dt^2)+q(t)生成的具有某种边界条件的n个正则Schrodinger算子Li(i=1,…,n)的积Ln…L2L1自伴性问题,证明了积算子Ln…L2L1自伴的充分必要条件为Li=L(n+1-i)^*(i=1,…,[(n+1)/2]).
出处
《南京大学学报(数学半年刊)》
CAS
2004年第1期43-53,共11页
Journal of Nanjing University(Mathematical Biquarterly)
参考文献12
-
1Bian X J. On Self-Adjointness of Power of 2-nd Order Self-Adjoint Differential Operators [in Chinese]. Acta Scientiarum Naturalium Universitatis NeiMonggol, 1996, 27: 1- 10.
-
2Cao Z J and Liu J L. On the Deficiency IndexTheory of Singular Symmetric Differential Opera tors [in Chinese]. Beijing: Advance in Math. , 1983, 12: 161-178.
-
3Cao Z J, Sun J and Edmunds D E. On Self-Adjointness of the Products of Two Second-Order Differential Operators. Acta Math. Sinica(English Ser. ), 1999, 15: 375-386.
-
4Coddington E A. The Spectral Representation of Ordinary Self-Adjoint Differential Operators. Ann. Math., 1954,60: 192-211.
-
5Dunford N and Schwartz J T. Linear Operators, Part Ⅱ: Spectral Theory Self-Adjoint Opera tors in Hilbert Space. Interscience Publishers, New York, 1963, 1192-1201.
-
6Kauffman R M, Read T and Zettl A. The Deficiency Index Problem of Powers of Ordinary Dif ferential Expressions. Lect. Notes in Math. , 621, Berlin, New York: Springer-Verlag, 1977.
-
7Moller M and Zettl A. Symmetric Differential Operators and Their Friedrichs Extension. J. Differential Equations, 1995, 115: 50- 69.
-
8Naimark M A. Linear Differential Operators. Vol. Ⅱ , Ungar, New York, 1968.
-
9Race D and Zettl A. On the Commutativity of Certain Quasi-Differential Expression I. J. Lon don Math. Soc. , 1990,42: 489-504.
-
10Schechter M. Operator Methods in Quantum Mechanics. North Holland, New York, 1981.