期刊文献+

弹性曲梁几何非线性精确模型及其数值解 被引量:20

EXACT GEOMETRICALLY NONLINEAR MATHEMATICAL FORMULATION AND NUMERICAL SIMULATION OF CURVED ELASTIC BEAMS
下载PDF
导出
摘要 基于直法线假设,采用轴线可伸长梁的几何非线性理论,建立了弹性曲梁在任意荷载(保守和非保守)作用下的静态大变形数学模型。其中包含了轴线弧长、轴线位移、横截面转角、内力等七个独立未知函数。通过引进变形后的弧长为未知函数,使得问题的求解区间为未变形梁的轴线长度。该模型不仅考虑了轴线伸长,同时精确地考虑了梁的初始曲率对变形的影响以及轴向变形与弯曲变形之间的相互耦合效应。作为应用,采用打靶法计算了悬臂半圆形曲梁在沿轴线均布的切向随动载荷作用下的非线性平面弯曲问题,给出了随载荷参数大范围变化的平衡路径曲线及平衡构形。 Based on the assumption of straight normal line of beams and by employing geometrically nonlinear theory for axially extensible beams, governing equations of large static deformations of curved elastic beams subjected to arbitrarily distributed loads (conservative or non-conservative) are derived. The equations contain seven independent unknown functions such as the arc length, the displacements of the central line, the rotational angle and the resultant internal forces at a cross section. By introducing the deformed arc length as one of the unknown functions, it makes the range of the spatial variables of the problem still within the undeformed length of the beam. In the mathematical model, not only the effects of the axial elongation and the initial curvature of the curved beam on the deformation are accurately taken into account but also the coupling between elongation and bending is considered. As a numerical example, the nonlinear plane bending of a cantilever semicircle beam subjected to tangentially distributed follower force along the axial line is analyzed by a shooting method. The equilibrium paths and configurations of the deformed beams, varying with the load parameter in a large range, are presented.
出处 《工程力学》 EI CSCD 北大核心 2004年第2期129-133,共5页 Engineering Mechanics
基金 甘肃工业大学学术梯队及特色研究方向重点资助项目(T200207) 科技部国家重大基础研究前期预研专项(1001CCA4300)
关键词 弹性曲梁 几何非线性 拉-弯耦合 随动载荷 打靶法 Bending (deformation) Mathematical models Numerical methods Stretching
  • 相关文献

参考文献13

  • 1S J Britvec. The stability of elastic systems[M]. Pergamon Press, New York, l973.
  • 2T Stemple. Extensional beam-columns: an exact theory [J]. Int. J. Non-Linear Mechanics, 1990, 25(6):6l5-623.
  • 3S S Antman. Non-linear problems of elasticity[M]. Springer, Berlin, l995.
  • 4C P Filipich and M B Rosales. A further study on the post-buckling of extensible elastic rods[J]. International Journal of Non-Linear Mechanics, 2000, 35: 997-l022.
  • 5R B Maretic and T M Atanackovic. Buckling of column with base attached to elastic half-space[J]. Journal of Engineering Mechanics, 2001, 127(3): 242-247.
  • 6D W Coffin, F Bloom. Elastica solution for the hygrothermal buckling of a beam [J]. International Journal of Non-Linear Mech., 1999, 34: 935-947.
  • 7Li Shirong and Zhou Youhe. Thermal post-buckling of a heated elastic rod with pinned-fixed ends[J]. Journal of Thermal Stresses, 2002, 25(1): 45-56.
  • 8H P William, P F Brain and A T San. Numerical Recipes ? The Art of Scientific Computing [C]. Cambridge University Press, London, 1986.
  • 9程昌钧 朱正佑.结构的分叉与屈曲[M].兰州:兰州大学出版社,1990..
  • 10李世荣,程昌钧.加热弹性杆的热过屈曲分析[J].应用数学和力学,2000,21(2):119-125. 被引量:42

二级参考文献15

  • 1陈建康,王汝鹏.弹性杆热膨胀屈曲特性分析[J].力学与实践,1994,16(3):23-26. 被引量:7
  • 2程昌钧 朱正佑.结构的分叉与屈曲[M].兰州:兰州大学出版社,1991.83-88.
  • 3V V Bolotin. Non-conservative Problems of the Theory of Elastic Stability[M]. Oxford: Pergamon Press, 1963.
  • 4G Herrmann. Stability of equilibrium of elastic systems subjected to nonconservative forces[J]. Applied Mechanics Review, 1967, 20(1): 103-108.
  • 5H Leipholz. Stability of elastic systems[M]. Alphen aan den Rijin: Sijthoff & Noordhoff, 1980.
  • 6R V Vitaliani, A M Gasparini and A V Seatta. Finite dement solution of the stability problem for nonlinear undamped and damped system under nonconservative loading[J]. International Journal of Solids and Structures,1997, 34: 2497-2516.
  • 7F M Detinko. On the elastic stability of uniform beams and circular arches under non-conservative loading[J].International Journal of Solids and Structures, 2000, 37:5505-5515.
  • 8C P Filipich and M B Rosales. A Further study on the post-buckling of extensible elastic rods[J]. International Journal of Non-linear Mechanics, 2000, 35: 997-1022.
  • 9H P William, P F Brain and A T Sau et al. Numerical Recipes-The Art of Scientific Computing[M]. London: Cambrage University Press, 1986.
  • 10Li Shirong, Zhou Youhe. A shooting method for non-linear vibration and thermal post-buckling of heated orthotropic circular plates[J]. Journal of Sound and Vibration, 2001, 248(2), 379-380.

共引文献54

同被引文献212

引证文献20

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部