期刊文献+

Construction of compactly supported orthonormal wavelets with beautiful structure 被引量:9

Construction of compactly supported orthonormal wavelets with beautiful structure
原文传递
导出
摘要 In this paper, a new method of constructing symmetric (antisymmetric) scal-ing and wavelet filters is introduced, and we get a new type of wavelet system that hasvery beautiful structure. Using this kind of wavelet system, we can achieve filters withthe properties: rational, symmetric or antisymmetric, the lengths of the filters are shorterand the corresponding functions have higher smoothness, so they have good prospect inapplications. In this paper, a new method of constructing symmetric (antisymmetric) scal-ing and wavelet filters is introduced, and we get a new type of wavelet system that hasvery beautiful structure. Using this kind of wavelet system, we can achieve filters withthe properties: rational, symmetric or antisymmetric, the lengths of the filters are shorterand the corresponding functions have higher smoothness, so they have good prospect inapplications.
出处 《Science in China(Series F)》 2004年第3期372-383,共12页 中国科学(F辑英文版)
关键词 scaling (wavelet) filters SYMMETRIC orthonormal wavelet systems scaling (wavelet) filters symmetric orthonormal wavelet systems
  • 相关文献

参考文献8

  • 1[1]Daubechies, I., Orthonormal bases of compact supported wavelets, Comm. Pure and Appl. Math., 1988, 41:909-996.
  • 2[2]Daubechies, I., Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
  • 3[3]Steffen, P., Heller, P., Gopinath, R. A. et al., Theory of regular M-band wavelet bases, IEEE. Trans. on Signal Processing, 1993, 41:3497-3511.
  • 4[4]Chui, C., Lian, J. A., Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3, Appl. Comput. Harmon. Anal., 1995, 2: 68-84.
  • 5[5]Belogay, E., Wang, Y., Compactly supported orthogonal symmetric scaling functions, Appl. Comput. Harmon.Anal., 1999, 7: 137-150.
  • 6[6]Jawerth, B., Peng Lizhong, Compactly supported orthogonal wavelets on the Heisenberg group, Research report No. 45 (2001).
  • 7[7]Riemenschneider, S. D., Shen Zuowei, Wavelets and pre-wavelets in low dimensions, J. Approximation Theory,1992, 71: 18-38.
  • 8[8]Heller, P. N., Resnikoff, H. L, Wells, Jr. R. O., Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications, Cambridge, MA: Academic Press, 1992, 15-50.

同被引文献4

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部