期刊文献+

决策细化的粗糙集理论分析

Analysis of Rough Set Theory on Decision Subdivision
下载PDF
导出
摘要 对基于粗糙集的决策系统,从理论上分析了决策数据细化的程度对规则近似质量、近似分类精度、核属性和信息熵的影响.证明了决策属性的属性值划分越细,则其规则近似质量、近似分类精度和信息熵就越小,并且决策表中决策属性值细化后所得到的核属性集一定包含细化前的核属性集.因此,在对决策属性离散化时,决策数据细化的程度要适宜.研究结果对研究决策表属性的约简、决策规则的形成和有效性等问题具有实际意义. The degree of subdivision of the decision attribute value directly influences upon the approximation quality of rules, accuracy of approximation classification, core attributes and information entropy in decision systems based on rough set theory. It is theoretically demonstrated that the finer the decision attribute discretization of a decision table is, the lower the approximation quality of rules, and the accuracy of approximation classification and information entropy are on any attribute set. Meanwhile, if the attribute values of decision attributes are divided into finer values, then the core attributes set obtained from the finer decision table must include the core attributes set obtained from the previous decision table. So the refinement degree of decision data should be chosen properly in the discretization of decision attributes. The research is helpful for the attribute reduction, formation of decision rules and enhancing confidences of decision rules.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第6期555-557,582,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(69803014 60173058) 河南省自然科学基金资助项目(0311012800).
关键词 决策细化 近似分类 近似质量 信息熵 核属性 Approximation theory Classification (of information) Rough set theory
  • 相关文献

参考文献10

  • 1Duntsch I,Gediga G. Simple data filtering in rough set systems[J]. International Journal of Approximate Reasoning,1998,18(1-2): 93-106.
  • 2Pawlak Z. Rough sets[M]. Norwell, USA: Kluwer Academic Publishers,1991.
  • 3Pawlak Z. Rough sets [J]. International Journal of Information and Computer Science,1982,11(5): 341-356.
  • 4Duntsch I,Gediga G. Uncertainty measures of rough set prediction [J]. Artificial Intelligence,1998,106(1):109-137.
  • 5Pawlak Z,Slowinski R. Rough set approach to multi-attribute decision analysis[J]. European Journal of Operational Research, 1994, 72(3): 443-459.
  • 6Lee T L,Tsai C P,Jeng D S,et al. Neural network for the prediction and supplement of tidal record in Taichung Harbor,Taiwan[J]. Advances in Engineering Software,2002,33(6):329-338.
  • 7Beaubouef T,Petry F E. Information-theoretic measures of uncertainty for rough sets and rough relational databases [J]. Information Sciences,1998,109(1-4):185-195.
  • 8侯利娟,王国胤,聂能,吴渝.粗糙集理论中的离散化问题[J].计算机科学,2000,27(12):89-94. 被引量:104
  • 9尹旭日,周志华,何佳洲,陈世福.一种基于Rough集理论的数据过滤方法[J].计算机研究与发展,2000,37(9):1082-1086. 被引量:13
  • 10刘清,黄兆华,刘少辉,姚力文.带Rough算子的决策规则及数据挖掘中的软计算[J].计算机研究与发展,1999,36(7):800-804. 被引量:41

二级参考文献13

  • 1曾黄麟.粗集理论及其应用-关于数据推理的新方法 (修订版)[M].重庆:重庆大学出版社,1998.83-87.
  • 2刘清 王黔英.基于Rough集的Rough数和λ算子的逻辑价值[J].软件学报,1996,:455-461.
  • 31.Pawlak Z. Rough sets. International Journal of Information and Computer Science, 1982, 11(5): 341~356
  • 42.Pawlak Z, Grzymla-Busse J et al. Rough sets. Communications of th e ACM, 1995, 38(11): 88~95
  • 53.Pawlak Z, Slowinski R. Rough set approach to multi-attribute decision analysis. Institute of Computer Science, Warsaw University of Technology, Tech Rep: 36, 1993
  • 64.Düntsch I, Gediga G. Simple data filtering in rough set systems. Inte rnational Journal of Approximate Reasoning, 1998, 18(1-2): 93~106
  • 75.Düntsch I, Gediga G. Statistical evaluation of rough set dependency a nalysis. International Journal of Human-Computer Studies, 1997, 46(5): 589~604
  • 86.Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data. Do rdrecht: Kluwer, 1991
  • 9Liu Q,Proc RSCTC’98,1998年,6卷,432页
  • 10Liu Qing,Proc RSFD′96 Int Conf Arti-ficial Intelligence,1996年,55页

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部