期刊文献+

基于小波和非线性含输入自回归模型的系统辨识算法 被引量:1

System Identification Based on Wavelet and Nonlinear Autoregressive with Exogenous Inputs Model
下载PDF
导出
摘要 提出了一种结合小波理论和非线性含输入自回归(NARX)模型的系统辨识新算法.该算法利用小波函数有效的逼近能力避免了应用NARX模型系统辨识时确定模型结构的复杂过程,消除了通常小波网络辨识算法由于输入变量之间可能存在巨大差别而引入的严重失真,构成了一个通用、有效、不依赖于系统先验信息的非线性辨识框架.两则数据仿真表明,对于高度非线性系统,该算法可使系统估计的均方误差减少60%以上. A new approach to system identification was proposed, which combined wavelet theory and nonlinear autoregressive with exogenous (NARX) model properly. The approach utilized the efficient approximation power of wavelet functions to remove the complicated processes of model structure determination using NARX model in system identification. It avoided potential serious distortion caused by great difference among the input variables in the universal identification algorithm based on wavelet networks and could achieve a more accurate estimation of system. It constructed a universal and efficient framework of nonlinear identification without depending on a priori information. For serious nonlinear systems, two simulation examples show that the mean of square errors of output estimation caused by the universal wavelet network algorithms can be reduced more than 60% by the proposed approach.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第6期611-614,共4页 Journal of Xi'an Jiaotong University
关键词 非线性含输入自回归模型 系统辨识 小波分析 Algorithms Estimation Models Nonlinear systems Regression analysis Wavelet transforms
  • 相关文献

参考文献8

  • 1Chen S, Billings S A, Luo W. Orthogonal least squares methods and their application to nonlinear system identification [J]. International Journal of Control, 1989, 50(5): 1 873-1 896.
  • 2Zhu Q M, Billings S A. Parameter estimation for stochastic nonlinear rational models [J]. International Journal of Control, 1993, 57(2): 309-333.
  • 3Jun Z, Gilbert G W, Yubo M, et al. Wavelet neural networks for function learning [J]. IEEE Trans Signal Processing, 1995, 43(6): 1 485-1 496.
  • 4Zhang Q H. Using wavelet network in nonparametric estimation [J]. IEEE Trans Neural Networks, 1997, 8(2): 227-236.
  • 5Coca D, Billings S A. Non-linear system identification using wavelet multiresolution models [J]. International Journal of Control, 2001,74(18): 1 718-1 736.
  • 6Tharmarajah K, Zhang Q H. Multidimensional wavelet frames [J]. IEEE Trans Neural Networks, 1995,6(6): 1 552-1 556.
  • 7Jonas S,Zhang Q H, Lennart L, et al. Non-linear black-box modeling system identification: a unified overview [J]. Automatica, 1995, 31(12): 1 691-1 724.
  • 8Billings S A, Chen S. Extended model set, global data and threshold model identification of severely non-linear systems [J]. International Journal of Control, 1989, 50(5): 1 897-1 923.

同被引文献14

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2Tse Peter, Yang W X. Shortcoming of wavelet transform in machine fault diagnosis and the proposed solution [A]. ACSIM Proceeding[ C ]. 2002. 357-362.
  • 3Z Peng, Y He, Z Chen,F Chu. Identification of the shaft or bit for rotating machines using wavelet modulus maxima [ J ].Mechanical Systems and Signal Processing, 2002, 16(4):623-635.
  • 4Coca D, Billings SA. Non-linear system identification using wavelet multi-resolution models [ J ]. International Journal of Control, 2001,74( 18):1718-1736.
  • 5Martin Vetterli. Wavelets, approximation and compression[ J]. IEEE Signal Processing Magazine, 2001,11 (3) : 59-73.
  • 6Zhang Q H. Using wavelet network in nonparametric estimation [J]. IEEE Trans Neural Networks, 1997, 8 (2) : 227- 236.
  • 7Jia Minping, Du Ruxu. Evolutionary spectrun based on wavelet transfonn and application in fault diagnosis[A]. Proceedings of the 11th International Conf, on Condition Monitoring and Diagnosis Eng, 8211 [ C ]. Australia: Monash University Press, 1998(1): 463-476.
  • 8Ruzzene M, Fasana A, Garibaldi L, et al. Natural frequencies and damping identification using wavelet transform: application to real data[J]. Mechanical Systems and Signal Processing, 1997, 11(2) :207-218.
  • 9程耕国,周凤星.一种基于小波分析的故障检测与诊断[J].控制与决策,2001,16(B11):828-830. 被引量:19
  • 10李传庆,徐敏,张曙.基于小波分析的信号消噪法[J].应用科技,2003,30(2):14-17. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部