期刊文献+

分类中软间隔损失函数的V_γ维 被引量:1

On the V_γ dimension of soft margin loss functions in classification
下载PDF
导出
摘要 推广能力是刻画学习机器性能优劣的重要指标,它的界在算法设计中有着重要的作用.人们往往用VC维或者Vγ维来给出推广能力的界.计算了分类中一类特殊的范围较广的软间隔损失函数的Vγ维,并给出使用此种损失函数的核分类器的推广能力的界. Generalization performance is an important index that describes the perfectness of a learning machine,whose bound plays a vital role in algorithm designing.Usually give the bounds by VC dimension or V_γ dimension.But in most cases in classification when the choosed loss function is a real-valued one in an infinite RKHS,the VC dimension turns out to be infinite,thus it is not useful to us.This paper calculates the upper bound of the V_γ dimension of a wide and special kind of soft margin loss functions in classification,then gives the upper bound of generalization performance of this kind of kernel classifiers.
出处 《湖北大学学报(自然科学版)》 CAS 2004年第2期105-109,共5页 Journal of Hubei University:Natural Science
基金 国家自然科学基金资助(19771009) 湖北省自然科学基金资助(99J169)
关键词 软间隔损失函数 Vγ维 Pγ维 推广能力 渐近收敛性 经验风险泛函 soft margin loss function V_γ dimension P_γ dimension generalization performance
  • 相关文献

参考文献8

  • 1Cucker F,Smale S.On the mathematical foundations of learning[J].Bulletin of American Mathematical Society,2002,39(1):1~49.
  • 2Vapnik V.The nature of statistical learning theory[M].New York:Springer,2000.
  • 3Vapnik V.Statistical learning theory[M].New York:John Wiley & Sons,1998.
  • 4Evgeniou T,Pontil M.A note on the generalization performance of kernel classifier with margin[A].Hiroki Arimura,Sanjay Jain,Arun Sharma.Algorithmic learning theory[C].Sydney:Springer,2000.306~315.
  • 5Alon N,Ben-David S,Cesa-Bianchi N,et al.Scale-sensitive dimensions,uniform convergence and learnability[J].J of the ACM,1997,44(4):615~631.
  • 6Gurvits L.A note on scale-sensitive dimension of linear bounded functionals in Banach space[J].Theoretical Computer Science,2001,261(1):81~90.
  • 7Evgeniou T,Pontil M.On the Vγ dimension for regression in reproducing kernel Hilbert space[A].Osamu Watanabe,Takashi Yokomori.Algorithmic learning theory[C].Tokyo:Springer,1999.106~117.
  • 8Evgeniou T,Pontil M,Poggio T.Regularization networks and support vector machines[J].Advances in Computational Mathematics,2000,13(1):1~50.

同被引文献7

  • 1Cucker F, Smale S. On the mathematical foundations of learning[J]. Bulletin of the Amer Math Soc, 2001,39(1) :1 -49.
  • 2Vapnik V. Statistical learning theory[M]. New York:John Wiley & Sons,1998.
  • 3Vapnik V. The nature of statistical learning theory[M]. New York: Springer, 2000.
  • 4Alon N, Ben-David S, Cesa-Bianchi N, et al. Scale-sensitive dimensions, uniform convergence and learnability[J]. J of the ACM, 1997,44(4):615 - 631.
  • 5Gurvits L. A note on scale-sensitive dimension of linear bounded functionals in Bananch space[J]. The oretical Computer Science, 2001,261(1) :81 - 90.
  • 6Evgeniou T, Pontil M. On the Vγ dimension for regression in reproducing kernel Hilbert space [C]. Osamu Watanabe, Takashi Yokomori. Algorthmic Learning Theory. Tokyo:Springer, 1999 : 106 - 117.
  • 7Evgeniou T, Pontil M, Poggio T. Regularization networks and support vector machines [J]. Advances in Computational Mathematics, 2000,13 ( 1 ) : 1 - 50.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部