摘要
在复合电沉积工艺中,通过优选工艺参数可以获得纳米颗粒复合量较高的复合沉积层,以使其具有某些特殊的性能。本文运用正交试验法优化了对复合沉积层中纳米颗粒复合量有较大影响的各工艺参数,然后用BP神经网络分析方法对其结果进行分析处理。预测并得到较正交试验法所得最优工艺水平组合时复合量更高的复合沉积层,同时对所得复合沉积层进行了表面形貌观察和能谱分析。
In the composite electrodeposition, higher nanoparticle content in nanocomposite coatings are realized by optimizing process parameters, so that these composite coatings have excellent properties. The optimized process parameters that have major influence on nanoparticle content were obtained by orthogonal test, and the result was further analyzed by BP neural network. Nanoparticle content in nanocomposite coatings was predicted and the composite coating which has the highest nanoparticle content was obtained. The surface morphology of the nanocomposite coating was surveyed and its energy spectrum was analyzed.
出处
《功能材料》
EI
CAS
CSCD
北大核心
2004年第3期383-384,388,共3页
Journal of Functional Materials
基金
国家自然科学基金资助项目(50075040)
关键词
复合电沉积
正交试验
BP神经网络
复合量
Electrodeposition
Nanostructured materials
Neural networks
Nickel
Optimization
Silicon carbide