期刊文献+

基于信息融合的井下图像跟踪

Underground Image Tracking Based on Data Fusion
下载PDF
导出
摘要 提出了一种新的井下图像跟踪算法图像相关算法与卡尔曼滤波器之间的信息进行融合·此算法基于贝叶斯规则,将一种常用的均方差图像相关算法和卡尔曼滤波器两者信息进行融合,得到一种新的成像跟踪算法·改进后的算法融合了MSD相关器和卡尔曼滤波器两者的信息,使得两者之间的信息反馈增强,提高了跟踪算法的性能和鲁棒性,大大减少了目标失锁的可能性·另外,改进后的算法还融合了噪声的统计性能,提高了对噪声的抑制能力·从理论计算和实验结果看,用这种算法获得的图像比一般相关算法获得的图像更具有真实性和准确性· A new underground image tracking algorithm is developed by way of a fusion done between a commonly-used mean square image correlator and Karlman filter, based on Bayes rule. With the fusion of both the information from the MSD correlator and Karlman filter, the improved algorithm can enhance the information feedback between them and its tracking performance and robustness so as to minimize the out-of-control possibility. Furthermore, the improved algorithm also incorporate the statistical characteristics of noise to improve noise suppressibility. The theoretical and practical results show that the images acquired from the new algorithm are much more real and accurate than the correlative algorithms.
作者 宫义山 赵海
出处 《东北工学院学报》 EI CSCD 北大核心 2004年第6期547-550,共4页
基金 国家自然科学基金资助项目(69873007)
关键词 信息融合 井下图像跟踪 图像相关 卡尔曼滤波器 信息反馈 贝叶斯规则 噪声 image correlation data fusion Karlman filter image tracking information feedback Bayes rule
  • 相关文献

参考文献9

  • 1He You, Wang Guohong, Lu Dajin. Multisensor information fusion with applications[ M ]. Beijing: Publishing House of Electronics Industry, 2000. 102 - 110.
  • 2徐凌宇,尹国成,宫义山,赵海.基于不同置信度的证据组合规则及应用[J].东北大学学报(自然科学版),2002,23(2):123-125. 被引量:17
  • 3Cuzzolin F, Frezza R. Evidential reasoning framework for object tracking[J]. French Blekbug VA, 1999,3840: 13-24.
  • 4Yager R. Using approximate reasoning to represent default knowledge[J]. Artificial Intelligence, 1987, 31 ( 1 ): 99 -112.
  • 5Dencoux J. Theory. analysis of evidence-theoretic decision rules for pattern classification [J ]. Pattern Recognition, 1997, 30(7) : 1095 - 1107.
  • 6Dubois D, Prade H. Default reasoning and Wxssibility theory[J]. Artificial Intelligence, 1988,35(2):243-257.
  • 7Wang Gengsheng. One algorithm for increase matching precision[J ]. Technique of Tactics-Missile, 1992, 3 ( 4 ) : 30- 34.
  • 8Liu Guoming, Xia Zhuxun, Xie Hongcheng. Data fusion and its applications [ M ]. Beijing: National Defenee Industry Press, 2000.101 - 194.
  • 9Zhou Yue, Shen Gongxun, Fang Jianping. Target image tracking under well based on data fusion [J ]. Proceedings of Electron, 1998,12(3) :89 -91.

二级参考文献10

  • 1[6]Pigeon L,Solaiman B,Toutin T,et al. Dempster-Shafer theory for multi-satellites remotely-sensed observations proceedings of SPIE [J]. SPIE Bellingham WA USA, 2000,4501:228-236.
  • 2[7]Desmarais K, Michel C, Jiming L. Exploring the appli cations of user-expertise assessment for intelligent interfaces[J]. Publ by ACM New, 1993,4(2):1298-1305.
  • 3[8]Golshani F,Cortes-Rello E. Dynamic route planning with u ncertain information[J]. Knowledge-Based Systems,1996,9(4):223-232.
  • 4[9]Dencoux J. Thierry analysis of evidence-theoretic decision rules for pattern classification[J]. Pattern Recognition, 1997,30(7):1095-1107.
  • 5[10]Cuzzolin F,Frezza R. Evidential reasoning framework for object tracking[J]. French Blekbug VA, 1999,3840:13-24.
  • 6[1]Yager R. Using approximate reasoning to represent default knowledge[J]. Artificial Intelligence, 1987,31(1):99-112.
  • 7[2]Dubois D, Prade H. Default reasoning and possibility theory[J]. Artificial Intelligence, 1988,35(2):243-257.
  • 8[3]Murphy A, Catherine K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000,29(1):1-9.
  • 9[4]Murphy A, Robin R. Dempster-Shafer theory for sensor fusion in autonomous mobile robots[J]. IEEE Transactions on Robotics and Automation,1998,14(2):197-206.
  • 10[5]Murphy A, Robin R. Adaptive rule of combination for observations over time[J]. IEEE Piscataway NJ USA, 1996,13(1):125-131.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部