期刊文献+

钢铁企业合同匹配多目标优化模型与算法 被引量:5

Optimal Multi-Objective Model and Algorithm for Order Matching Problems in Iron & Steel Plants
下载PDF
导出
摘要 针对钢铁企业中存在的合同对库存余材的优化匹配问题,建立了实现余材利用量最大化和匹配损失费用最小化的多目标0-1规划模型·采用模糊决策方法处理两个目标函数,尝试基于群体的增量学习(Population BasedIncreasedLearning,简称PBIL)算法进行求解·结合模型的特点,利用自然数编码表示合同的匹配结果,按照学习概率大小修复不可行个体·通过对应用实例的计算,以及与遗传算法结果的比较,证明该模型和算法是解决合同优化匹配问题较为理想的方式· Aiming at solving the problem to match orders with inventory surplus in an iron and steel plant, an optimal multi-objective 0-1 programming model is established to maximize the utilization of material surplus on inventory and minimize the matching cost orders. Two objective functions are incorporated by fuzzy decision -making approach and the model is solved by improved PBIL (Population-Based Increased Learning). Natural number encoding is used to represent the result of orders matching based on the models characteristic with the impractical chromosomes repaired in terms of learning probability. Then, the computation of a practical instance and a comparison of the computational result with the result by genetic algorithm further demonstrate that the model and the algorithm are the ideal way to solve the optimal problem of order matching.
出处 《东北工学院学报》 CSCD 北大核心 2004年第6期527-530,共4页
基金 国家自然科学基金资助项目(70171056) 国家高技术研究发展计划项目(2002AA412010) 辽宁省博士启动基金资助项目(200112020)
关键词 钢铁企业 合同匹配 多目标优化 0-1规划 极大极小算子 PBIL算法 模糊决策 iron & steel plant order matching multi-objective integral programming max-min operator PBIL(Population-Based Increased Learning)
  • 相关文献

参考文献8

  • 1Rajagopalan S. Make to order or make to stock: model and applieation[J ]. Management Science, 2002,48 (2) : 241 -256.
  • 2Vasko F J, Wolf F E, Stott K L, et al. Bethlehem Steel combines cuuing stock and sm covering to enhance customer service[J ]. Mathematical and Comtputer Modelling, 1992,16(1):9- 17.
  • 3Kalagnanam J R, Dawande M, Trumbo M, et al. Surplus inventory matching problem in the process industry [ J ].Operations Research, 2000,48 (4) : 505 - 516.
  • 4Zirrmlennann H J, Zysco P. Latent connectives in human decision making[J ]. Fuzzy Sets and Systems, 1980,4:37 -51.
  • 5Baluja S, Caruana R. Removing the genetics from the standard genetic algorithm [ A ]. Prtxeeding of the International Conference an Machine Learning [ C ]. San Mateo: Morgan kaufmann, 1995.38- 46.
  • 6Pelikan M, Goldberg D E, 1.ol3o F G. A survey of optimization by building and using probabilistic models[J].Computational Optimization and Applications, 2002, 21(1):5-20.
  • 7Greene J R. Population-based incremental learning as a simple versatile tool for engineering optimization [ A ]. Proc of EvCA'96[(7]. Moscow: Russian Academy of Science, 1996.258 - 269.
  • 8Powell D, Skolnick M. Using genetic algorithms in engineering design optimization with nonlinear constraints[A]. Proceeding of the 5th International Conference on Genetic Algorithms [C]. San Mateo: Morgan Kaufmann,1993. 424 - 430.

同被引文献56

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部