期刊文献+

一类非齐次退化椭圆方程组的C^(1,α)正则性 被引量:2

Regularity for A Class of Degenerate Elliptic Systems with Inhomogeneity
下载PDF
导出
摘要 利用非齐次项扰动法,证明了一类非齐次退化椭圆方程组弱解一阶微商是属于Cam panato空间正则性结论,并在f(x)为H¨older连续条件下得到弱解一阶微商的局部H¨older连续性理论,本文将经典Uhlenback结果和最近的Hamburger变分问题结果推广到更一般的具有非齐次项情形. Making use of disturbation methods, we shall prove that the first derivatives of weak solutions for a class of degenerate elliptic systems belong to Campanato space. Moreover, we obtain the first derivatives of weak solutions are Hlder continuity under the assumption of f(x)∈C~α(Ω).
出处 《北方交通大学学报》 CSCD 北大核心 2004年第3期38-42,共5页 Journal of Northern Jiaotong University
基金 北方交通大学科研基金资助项目(2002SM061)
关键词 椭圆型偏微分方程 Morrey-Campanato空间 p调和方程组 正则性 elliptic partial differential equation Morrey-Campanato space p- harmonic systems regularity
  • 相关文献

参考文献9

  • 1Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems [M]. Princeton:Princeton Univ Press, 1983. 105; 64 - 89; 165 - 212.
  • 2Giaquinta M. Introduction to Regularity Theory for Nonlinear Elliptic Systems[M]. Birkhauser Verlag, 1993.37- 58;76 - 101.
  • 3Necas J. Introduction to the Theory of Nonlinear Elliptic Equations [M]. Teubner Verlagsge-sellschaft, Leipzig,1983.20 - 38; 138 - 198.
  • 4Bensoussan A, Frehse J. Regularity Results for Nonlinear Elliptic Systems and Applications [M]. Applied Math.Sci., Springer-Verlag, 2002. 151 ;63 - 112;299 - 347.
  • 5Uhlenback K. Regularity for A Class of Nonlinear Elliptic Systems[J]. Acta Math, 1977,138: 219 - 240.
  • 6Dibenedetto E. C1+a Local Regularity of Weak Solutions of Degenerate Elliptic Equations [J]. Nonlinear Anal.TMA, 1983, 7:827-850.
  • 7Hamburger C. Regularity of Differential Forms Minimizing Degenerate Elliptic Functionals [J]. Reine Angew.Math, 1992,431: 7-64.
  • 8Chen Y Z, Wu L C. The Equations and Systems of Elliptic Type of Second Order [M]. China: Science Press,2003. 130- 149.
  • 9Acerbi E, Fusco N. Regularity of Minimizers of Nonquadratic Functionals: The Case 1 < p < 2 [J]. J. Math Anal. and Appl, 1989,140:115- 135.

同被引文献9

  • 1郑神州,康秀英.THE COMPARISON OF GREEN FUNCTION FOR QUASI-LINEAR ELLIPTIC EQUATION[J].Acta Mathematica Scientia,2005,25(3):470-480. 被引量:2
  • 2Bensoussan A, Frehse J. Regularity Results for Nonlinear Elliptic Systems and Applications[M]. Applied Math. Sci.115.Springer-Verlag, 2002.63-112;299-347.
  • 3Giaquinta M. Introduction to Regularity Theory for Nonlinear Elliptic Systems[M]. Birkhuser:Springer Verlag, 1993.37-58;76-101.
  • 4Hamburger C. Regularity of Differential Forms Minimizing Degenerate Elliptic Functionals[J]. Reine Angew. Math, 1992,431:7-64.
  • 5Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems[M]. AnnMathStud:Princeton Univ ress, 1983.105.
  • 6Ne cas J. Introduction to the Theory of Nonlinear Elliptic Equations[M].Teubner:Verlagsge-Sellschaft, Leipzig,1983.
  • 7Uhlenback K. Regularity for A Class of Nonlinear Elliptic Systems[J]. Acta Math, 1977,138:219-240.
  • 8Acerbi E, Fusco N. Rcgularity of Minimizers of Non-Quadratic Functionals: The Case 1 <p < 2 [J]. Math Anal. and Appl, 1989,140:115-135.
  • 9Gironimo P Di, Espostio L, Sgambati L. A Remark on L^2,λ Regularity for Minimizers of Quasilinear Functionals[J]. Manuscripta Math, 2004,113:143-151.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部