期刊文献+

利用改进微粒群算法优化PID参数 被引量:14

Optimizing PID Parameters by Using Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 出一种利用改进微粒群算法优化PID参数的方法。微粒群算法 (PSO)是一种随机全局优化技术 ,算法通过微粒间的相互作用发现复杂搜索空间中的最优区域 ,算法简单、容易实现且功能强大。将PSO算法加以改进并应用在PID控制器的参数优化 ,经仿真证明了PSO算法的有效性 。 A method of optimizing PID parameter by using improved particle swarm optimization algorithm is stated. Particle swarm optimization(PSO) algorithm is a random global optimization technology. Through interaction between particles, the algorithm found the optimal area in complicate searching space. The algorithm features simple, ease to implement and powerful function. PSO algorithm has been improved and used inPID controller to optimize parameters. The simulation verified the effectiveness of PSO algorithm and shown that its performance is better than genetic algorithm and conventional experience formula.
作者 汪新星 张明
出处 《自动化仪表》 CAS 北大核心 2004年第2期19-22,共4页 Process Automation Instrumentation
关键词 PID控制器 微粒群算法 参数优化 随机全局优化 PSO PID controller Particle swarm optimization algorithm Parameter optimization
  • 相关文献

参考文献5

  • 1毛敏,于希宁.基于遗传算法的PID参数优化方法[J].中国电力,2002,35(8):48-51. 被引量:19
  • 2Kennedy J, Eberhart R. Particle swarm optimization. Pro IEEE Int Conf on Neural Networks. Perth, 1995:1942 - 1948
  • 3Eberhart R, Kennedy J. A new optimizier using particle swarm theory. Proc 6th Int Symposium on Micro Machine and Human Science. Nagoya, 1995:39 - 43
  • 4沈祖诒.水轮机调节北京[M].水利电力出版社,1988..
  • 5谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422

二级参考文献36

  • 1韩璞,张丽静.热工过程控制系统参数优化方法的研究[J].华北电力学院学报,1993(1):50-57. 被引量:8
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献438

同被引文献86

引证文献14

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部