期刊文献+

模糊信息粒化理论在空间信息系统地位的探讨 被引量:3

Study on the Position of TFIG in Spatial Information System
下载PDF
导出
摘要 粒化是人类认识的基础概念之一,粒化是整体分解成部分。空间信息粒、粒的属性及其取值是人类粒化及处理空间信息的特点。模糊信息粒化理论正是受人类粒化信息的特点并据此进行推理而启发。该理论的出发点是广义约束概念。在TFIG中,主要的广义化方法有:模糊化(f-广义化)、粒化(g-广义化)以及这两种方式的结合模糊粒化(f,g-广义)。f,g-广义化使其与其它处理不确定性的方法相区别。本文着重就模糊信息理论在空间信息系统的不确定性的刻画、语义提取及语义共享、词语计算等方面的应用上进行了探讨。文章最后指出该理论等软计算方法是空间信息系统实现柔性化、智能化目标的一种工具。 On the basis of our realization to the world,granulation is one of the basic concepts. It refers to the whole divides into the parts. Information granulation has a key role in many methods and technical domains. The spatial information in our brain and information granules for spatial reference is fuzzy. Spatial information granules,its attributes and values are the characters of man's granulation and handling the spatial information. Theory of fuzzy information granulation(TFIG) is elicited by man's information granulation method and based this to infer. The start point of TFIG is extending constrain concept . A granule is depicted by its extending constrain. The extending constrain methods in TFIG are fuzzy, granulation and the joint of this two aspects etc. This article studies the theory's position in spatial information system, mainly talks about the aspects of indeterminate depicted, semantic abstracted and shares, and computing with words. At the end, the article points out that TFIG is an important tool on spatial information system to its flexible and intellectual target.
出处 《测绘与空间地理信息》 2004年第3期14-16,共3页 Geomatics & Spatial Information Technology
关键词 粒化 空间信息 TFIG 词语计算 模糊化 TFIG spatial information computing with words
  • 相关文献

参考文献4

  • 1L.A. Zadeh,Outline of a computational approach to meaning and knowledge representation based on a concept of a generalized assignment statement,in: M. Thoma A. Wyner(Eds.), proc of the Intermat. Seminar on Artificial Intelligence and Man - Machine Systems
  • 2L.A. Zadeh, Fuzzy and information granularity, in: M. Gupta, R.Ragade,R. Yager(Eds.) ,Advanced in Fuzzy Set Theory and Application [M], North - Holland, Amsterdam, 1989,3 - 18.
  • 3L.A. Zadeh, Fuzzy logic = computing with words, IEEE Trans. On Fuzzy Systems 4[A]. 1996,103 - 111.
  • 4(美)LotfiA Zadeh 著 阮达 黄崇福 编译.模糊集与模糊信息粒理论[M].北京:北京师范大学出版社,2000..

同被引文献22

  • 1王昊,王俊璞,田蔚风,金志华.梯度RBF神经网络在MEMS陀螺仪随机漂移建模中的应用[J].中国惯性技术学报,2006,14(4):44-48. 被引量:11
  • 2吉训生,王寿荣.MEMS陀螺仪随机漂移误差研究[J].宇航学报,2006,27(4):640-642. 被引量:55
  • 3修保新,刘忠,张维明,阳东升.基于信息粒化理论的主体间任务分配方法[J].国防科技大学学报,2007,29(3):71-75. 被引量:6
  • 4Payne H J, Tignor S C. Freeway incident-detection algorithms based on decision trees with states[J]. Transportation Research Record 682, 1978: 30.
  • 5Chassiakos A P, Stephanedes, Y J. Smoothing algorithms for incident detection [J]. Transportation Research Record 1394, 1993: 8.
  • 6Abdulhai B. A neuro-genetic-based university transferable freeway incident detection framework [J ]. Transportation Research Record 1859, 1996: 171.
  • 7Antoniades C N, Stephanedes Y J. Single-station incident detection algorithm (SSID) for sparsely instrumented freeway sites [ C ]//Applications of Advanced Technologies to Transportation Engineering, New York.. ASCE, 1995: 218.
  • 8Boris S Kerner. Three-phase traffic theory and highway capacity [J]. Physica A, 2004, 333.. 379.
  • 9Boris S Kerner, Sergey L Klenov, Andreas Hiller. Empirical test of a microscopic three-phase traffic theory [J]. Nonlinear Dynamics, 2007, 49..525.
  • 10DONG Chunjiao, SHAO Chunfu, LI Xia. Short-term traffic flow forecasting of road network based on spatiaL-temporal characteristics of traffic flow [C]//2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles:[s.n.], 2009: 645.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部