期刊文献+

新的独立成分分析算法实现功能磁共振成像信号的盲分离 被引量:7

BLIND SOURCE SEPARATION FOR FMRI SIGNALS USING A NEW INDEPENDENT COMPONENT ANALYSIS ALGORITHM
下载PDF
导出
摘要 采用独立成分分析(independentcomponentanalysis,ICA)的一种新的牛顿型算法来提取功能磁共振成像(functionalmagneticreasonanceimaging,fMRI)信号中的各种独立成分(包括与实验设计相关的成分以及各种噪声)。与fastICA相比,该算法减少了运算量,提高了运算速度,而且能够很好地分离出各个独立成分。结果表明该算法是一种有效的fMRI信号分析手段。 In order to separate independent components (task-related signal and other noises) from functional magnetic reasonance imaging(fMRI)signals, a new independent component analysis algorithm was used. In contrast to fastICA, the algorithm reduced computation and raised speed of operation. It also separated independent components from fMRI signals very well.
出处 《生物物理学报》 CAS CSCD 北大核心 2004年第3期188-192,共5页 Acta Biophysica Sinica
基金 国家自然科学基金项目(9010303330170321) 国家科技部973前期专项(2001CCA00700)
关键词 牛顿型算法 独立成分分析 功能磁共振成像 盲源分离 信号 Newton algorithm Independent component analysis Functional magnetic reasonanceimaging Blind source separation
  • 相关文献

参考文献2

二级参考文献16

  • 1唐一源,张武田,马林,翁旭初,李德军,何华,贾富仓.默读汉字词的脑功能偏侧化成像研究[J].心理学报,2002,34(4):333-337. 被引量:38
  • 2JUTTEN C, HERAULT J. Blind separation of sources,Part I: An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing,1991,24(1):1-10.
  • 3COMMON P. Independent component analysis,A new concept? [J]. Signal Processing, 1994,36(3):287-314.
  • 4HYVARINEN A, OJA E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000,13(4): 411-430.
  • 5MCKEOWN M J, MAKEIG S, BROWN G G,et al.Analysis of fMRI data by blind separation into independent spatial components [J]. Human BrainM apping, 1998,6(3): 160-188.
  • 6CALHOUN V D, ADALI T, PEARLSON G D, etal. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms[J]. Itunlan Brain Mapping, 2001,13(1):43-53.
  • 7STONE J V, PORRILL J, BUCHEL C, et al.Spatial, temporal, and spatiotemporal independent component analysis of FMRI data [A]. Proceedings of Leeds Statistical Research Workshop [C].Leeds : Leeds University Press, 1999.
  • 8Friston KJ, Phillips J, Chawla D, et al. Revealing interactions among brain systems with nonlinear PCA [J].Hum Brain Mapp, 1999,8:92~97.
  • 9McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components[J]. Human Brain Mapping, 1998,6:160~188.
  • 10Comon P. Independent component analysis-A new concept[J]? Signal Processing, 1994,36:287~314.

共引文献14

同被引文献58

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部