摘要
本文考虑神经网络经过时齐退火后的极限分布,从动力系统的随机扰动的观点出发,我们证明了极限分布将最后集中在吸引子的一个子集上,当网络可逆时,极限分布为该集合上的均匀分布,文中解释了上述现象发生的原因。
In this paper, the annealing procedure is considered for the neural network evolving as a homogeneous Markov chain. From the point of view of the perturbation of a dynamical system, we proved that the invariant measure will concentrate on a subset of attractors. The neural network, undergoing annealing procedure, will uniformly distribute on the subset when the neural network is reversible. The reason why that happens is given.
出处
《北京大学学报(自然科学版)》
CAS
CSCD
北大核心
1993年第5期563-573,共11页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家攀登计划资助
关键词
退火
神经网络
吸引子
时齐马氏链
Annealing
Neural Network
Homogeneous Markov Chain
Stochastic Dynamical System
Attract or