摘要
设R是环,但未必含有单位元,(S, )是Artin的严格全序幺半群.如果左R 模M具有性质(F),则左R 模M是弱Co Hopf模当且仅当左[[RS, ]] 模[MS, ]是弱Co Hopf模.
Let R be an associative ring not necessarily possessing an identity,and (S,) is a strictly totally ordered monoid which is also Artinian.It is proved that if a left R-module M has the property(F),then M is weakly Co-Hopfian if and only if the left [[R-(S,_]]- module[M-(S,≤_]is weakly Co-Hopfian .
出处
《西北师范大学学报(自然科学版)》
CAS
2004年第3期8-10,14,共4页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金(10171082)资助项目
关键词
弱Co-Hopf模
广义幂级数环
广义逆多项式模
weakly Co-Hop fian module
generalized power series ring
generalized inverse polynomials module