期刊文献+

磨粒图像的纹理分析及识别 被引量:3

Texture Feature Extraction and Recognition of Wear Debris Image
下载PDF
导出
摘要 以磨粒显微图像分析为应用背景,引入方向测度对磨粒图像表面纹理特征进行描述.该方法对磨粒图像各方向的灰度变化规律进行统计分析,提取了8个纹理特征.然后以提取的纹理特征为输入矢量,利用径向基函数神经网络对磨粒纹理进行分类识别.应用实例表明,方向测度综合反映了磨粒纹理的方向性和粗糙性,可用于磨粒纹理特征的描述;所建立的基于神经网络的磨粒纹理分类模型学习速度快,识别率较高. A method and results of wear debris texture description and classification were presented. Direction measure was used to describe the microscopic wear debris texture, and eight texture features were extracted. Used as the input vector of RBF neutral network, the wear debris was divided into four classes: smooth, rough, striation and pitted. The result of application shows that direction measure describes both the orientation and roughness of wear debris surface. And the classification system based on neutral network is fast in convergence, and high in accuracy.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第6期874-876,共3页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(50175069)
关键词 磨粒 表面纹理 纹理识别 人工神经网络 Debris Feature extraction Neural networks Pattern recognition Textures
  • 相关文献

参考文献5

  • 1Xu K, Luxmoore A R, Jones L M, et al. Integration of neural networks and expert systems for microscopic wear particle analysis[J]. Knowledge Based Systems,1998,11:213-227.
  • 2Laghapi M S, Boujarwah A. Wear particle texture classification using artificial neural networks [J].International Journal of Pattern Recognition and Artificial Intelligence, 1999,13 (3): 415 - 428.
  • 3WANG Da-dong, YANG De-bing, XU Jin-wu.Recognition of wear particles in lubricating oil using LVQ neural classifier [J]. Journal of University of Science and Technology Beijing, 1996,3 (1) : 26- 30.
  • 4段祥,胡正仪,苏祥芳,宫效红,王延平,严新平.磨损微粒的模式识别系统的研究[J].武汉大学学报(自然科学版),1998,44(5):619-622. 被引量:1
  • 5于晓晗,袁保宗.方向测度及其在纹理识别中的应用[J].自动化学报,1990,16(4):347-351. 被引量:14

二级参考文献5

共引文献14

同被引文献48

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部