期刊文献+

发展型方程的快速Legendre谱τ逼近

Fast Legendre Spectral Tau Approximation for Evolutionary Problems
下载PDF
导出
摘要 以发展型模型方程为背景,建立了半离散和全离散的Legendre谱τ格式,并用反向递推法和奇偶分解法建立了Legendre谱τ方法的快速算法,在每一时间层上,其运算量仅为O(N).运用离散能量法严格证明了全离散格式在时空方向的收敛阶分别为τ2和N1-m.数值结果显示了算法的有效性. The linear evolutionary equation was considered. The semi and fully discrete Legendre spectral Tau schemes were proposed. The corresponding algorithms were achieved by using the Galerkin differential recurrence formula in space which leads to a system with sparse matrix. The complexity of the algorithms are O(N) on each time level. It was strictly proved that the numerical solution possesses the second order in time and higher order in space. The algorithms are supported by the numerical results efficiently.
作者 贺力平 杜东
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第6期1035-1040,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10071049)
关键词 发展方程 谱方法 快速Legendre谱τ算法 收敛性 数值分析 evolution equations spectral mathods fast Legendre spectral Tau algorithms convergence numerical analysis
  • 相关文献

参考文献9

  • 1Shen Jie. Efficient spectral-Galerkin method I :Direct solvers of second- and fourth-order equations using Legendre polynomials[J]. SIAM J Sci Comput,1994, 15(6):1489-1505.
  • 2Bjorstad P E, Tjostheim B P. Efficient algorithms for solving a ffourth-order equation with the spectral-Galerkin method[J]. SIAM J Sci Comput,1997,18(2) : 621 - 632.
  • 3Guo Ben-yu, He Li-ping, Mao De-kang. On two-dimensional Navier-Stokes equation in stream function form[J]. J Math Anal Appl,1997,205(1) :1-31.
  • 4Guo Ben-yu, He Li-ping. The fully discrete Legendre spectral approximation of two-dimensional unsteady imcompressible fluid flow in stream function form [J]. SIAM J Numer Anal, 1998,35 (1): 146 -176.
  • 5He Li-ping, Mao De-kang, Guo Ben-yu. Predictioncorrection Legendre spectral scheme for incompressible fluid flow[J]. Rairo Math Model Numer Anal,2000,33(1) : 113- 120.
  • 6Bialecki B, Karageorghis A. A Legendre spectral Galerkin method for the biharmonic Dirichlet problem[J]. SIAM J Sci Comput,2000,22(5):1549-1569.
  • 7Bialecki B, Karageorghis A. A Legendre spectral collocation method for the biharmonic Dirichlet problem[J]. Rairo Math Mode Numer Anal ,2000,34(1):637-661.
  • 8Shen Jie. Efficient spectral-Galerkin method Ⅱ:Direct solvers of second- and fourth-order equations using Chebyshev polynomials [J]. SIAM J Sci Comput, 1995, 16(1):74-87.
  • 9杜东,贺力平.一维稳态问题的快速直接Legendre谱τ方法[J].上海交通大学学报,2004,38(4):653-657. 被引量:1

二级参考文献11

  • 1Gottlieb D, Orszag S A. Numerical analysis of spectral methods [A]. CBMS-NSF Reginal Conference Series in Applied Mathematics 26 [C]. Philadelphia:SIAM, 1977.
  • 2Canuto C, Hussaini M Y, Quarteroni A, et al.Spectral methods in fluid dynamics [M]. Berlin:Springer-Verlag, 1988.
  • 3Guo Ben-yu. Spectral methods and their applications[M]. Singapore: World Scientific Press,1998.
  • 4Bjorstad P E, Tjotheim B P. Efficient algorithm for solving a fourth-order equation with the spectralGalerkin method [J]. SIAM J Sci Comput, 1997,18(2) :621-632.
  • 5Bialecki B, Karageorghis A. A Legendre spectral Galerkin method for the biharmonic Dirichlet problem [J]. SIAM J Sci Comput, 2000,25 (5): 1549 -1569.
  • 6Bialecki B, Karageorghis A. A Legendre spectral collocation method for the biharmonic Dirichlet problem [J]. RAIRO Math Mode Numer Anal, 2000,34(1):637-661.
  • 7Guo Ben-yu, He Li-ping, Mao De-kang. On two-dimensional Navier-Stokes equation in stream function form [J]. J Math Anal Appl,1997,205(1):1-31.
  • 8Guo Ben-yu, He Li-ping. The fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form [J]. SIAM J Numer Anal, 1998,35(1): 146-176.
  • 9He Li-ping, Mao De-kang, Guo Ben-yu. Predictioncorrection Legendre spectral scheme for incompressible fluid flow [J]. RAIRO Math Model Numer Anal, 2000,33(1):113-120.
  • 10Shen Jie. Efficient spectral-Galerkin method Ⅰ : direct solvers of second- and fourth-order equations using Legendre polynomials [J]. SIAM J Sci Comput,1994,15 (6): 1489- 1505.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部