摘要
设A_m^d={(x^1,…,x^d)∈R^d,x^i>0,1≤i≤m≤d},称之为由m个d-1维坐标平面围成的角域。研究了无穷区域A_m^d中的条件布朗运动生命时的有限性及可积性。在一定条件下得到了该生命时有限及可积的充要条件。同时给出了A_m^d中终止布朗运动及调和函数的若干结果。
Suppose A_m^d={(x^1,…,x^d)∈R^d, x^i>0, 1≤i≤m≤d}, the angular do- main whose boundary is consisted of m (d-1)-dimension coordinative superplanes. The lifetimes of conditioned Brownian motions in A_m^d are investigated on topics such as its finiteness and integrability. Some preliminary rssults involved in killed Brownian motion and positive harmonic functions in A_m^d are also presented.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
1993年第4期427-434,共8页
Journal of Beijing Normal University(Natural Science)
基金
Supported by the Natural Science Foundation and Postdoctoral Foundation of China
关键词
条件布朗运动
生命时
布朗运动
Brownian motion
conditioned Brownian motion
lifetime
harmonic functions