期刊文献+

Mercer定理的推广 被引量:4

A Note on Mercer's Theorem
下载PDF
导出
摘要 再生核空间的研究是以Mercer核和Mercer定理为基础。由于Mercer定理只对为Lebesgus测度及X为紧集时成立 ,因此Mercer定理的推广对再生核空间的研究具有重要意义。本文将Mercer定理推广到 μ为Borel测度X为非紧的情形 。 The research of the reproducing kernel spaces is based on Mercer kernel and Mercer' Theorem.For Mercer' theorem is only right when μ is a Lebesgue measure.and when X is compact,in this paper we extended the result of Mercer' theorem to the situation that μ is a Borel measure and X is not compact.
机构地区 济南大学理学院
出处 《济南大学学报(自然科学版)》 CAS 2004年第3期280-282,共3页 Journal of University of Jinan(Science and Technology)
关键词 Mercer定理 非退化Borel测度 紧集 绝对一致收敛 Mercer' theorem non-degenerate borel measure compact converge uniformly and absolutely
  • 相关文献

参考文献3

  • 1N Aronszajn. Theory of reproducing kernels[J] .Transactions of the Amer Math. Soc, 1950, (68) :337-404.
  • 2Felipe Cucker, Steve Smale. On the Mathematical Foundations of Learning [J].Bulletin (New sties) of the American Mathematical Society,2002,39(1):1-49.
  • 3Hg Hochstadt.Intogral equations[M].John Wiley & Sons,1973.

同被引文献23

  • 1CUCKER F, SMALE S. On the mathematical foun-dations of learning [J].Bull Amer Soc,2001,39 : 1 - 49.
  • 2WU Qiang,YING Yiming, ZHOU Dingxuan. Learning rates of least square regularized regression [ J ]. Found Comput Math, 2006,6 : 171 - 192.
  • 3SMALE S, ZHOU Dingxuan. Learning theory estimates via integral operators and their approximations [ J ]. Constr Approx, 2007,26 : 153 - 172.
  • 4WU Qiang,ZHOU Dingxuan. Learning with sample dependent hypothesis spaces[J].Comput Math Appl, 2008,56 (11 ) :2896 - 2907.
  • 5ARONSZAJN N. Theory of reproducing kernels [ J ]. Trans Amer Math Soc, 1950,8:337 -404.
  • 6MODHA D S. Minimum complexity regression estimation with weakly dependent observations[J].IEEE Trans Inform Theory,1996,42:2133 -2145.
  • 7SUN Hongwei,WU Qiang. Application of integral operator for regularized leastsquare regression [J]. Mathematical and Computer Modelling,2009, 49 ( 1 ) :276 - 285.
  • 8SUN Hongwei,WU Qiang. A note on application of integral operator in learning theory [ J ]. Applied and Computational Harmonic Analysis,2009,26 : 416 -421.
  • 9HIRSCH F,ACOMBE G. Elements of Functional Analysis[M]. New York : pringer Verlag, 1999,52 - 64.
  • 10DEHLING H, PHILIPP W. Almost sure invariance principles for weakly dependent vectorvalued random variables[ J]. Ann Probability, 1982,10:689 - 701.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部