期刊文献+

测度链上非线性微分方程的三正解(英文) 被引量:1

TRIPLE POSITIVE SOLUTIONS FOR A NONLINEAR DIFFERENTIAL EQUATION ON A MEASURE CHAIN
下载PDF
导出
摘要 运用文 [1 ]中的Leggett Williams不动点定理 ,我们给出了测度链上的非线性微分方程-xΔΔ(t) =f(t,x(σ(t) ) ) ,t∈ [a,b]关于两点边值条件αx(a) - βxΔ(a) =0 ,γx(σ(b) ) +δxΔ(σ(b) ) Criteria are developed for the existence of three positive solutions for the nonlinear differential equation -x^(ΔΔ)(t)=f(t,x(σ(t))),t∈\ with general two points boundary conditions αx(a)-βx~Δ(a)=0,γx(σ(b))+δx~Δ(σ(b))=0 on a measure chain by using Leggett-Williams fixed point theorem\.
作者 柏传志
出处 《数学杂志》 CSCD 北大核心 2004年第4期361-364,共4页 Journal of Mathematics
基金 SupportedbytheNaturalScienceFoundationofJiangsuEducationOffice(0 3KJD1 1 0 0 56)
关键词 边界值问题 测度链 三正解 Leggett—Williams不动点定理 boundary value problem measure chain triple positive solutions (Leggett-Williams) fixed point theorem
  • 相关文献

参考文献4

  • 1R W Leggett, L R Williams, Multiple positive fixed-points of nonlinear operators on ordered Banach spaces[J]. Indiana Univesity Mathematics Journal. 1979, 28:673-688.
  • 2L Erbe, A Peterson, Positive solutions for a nonlinear differential equation on a measure chain[J].Mathematical and Computer Modelling. 2000, 32:571-585.
  • 3C J Chyan, J Henderson, Eigenvalue problem for nonlinear differential equations on measure chain[J]. J Math Anal Appl. 2000,245 ,547-559.
  • 4B Kaymakcalan, Kakshmikantham, S Sivasundaram, Dynamical Systems on Measure Chains[M]. Boston: Kluwer Academic, 1996.

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部