期刊文献+

具有时滞的N种群Lotka-Volterra竞争系统的周期解 被引量:3

PERIODIC SOLUTION FOR N SPECIES LOTKA-VOLTERRA COMPETITIVE SYSTEMS WITH TIME DELAY
下载PDF
导出
摘要 讨论了具有时滞的N种群Lotka Voltterra竞争系统 ,利用重合度理论和Lyapunov泛函方法 ,得到了该系统至少存在一个严格正周期解及其全局渐近稳定性的充分条件 。 N species Lotka-Volterra competitive systems are discused. By using the coincidence degree theory and Lyapunov functional methods, a sufficient condition is obtained for the existence and global stability of a positive periodic solution of the system. We generalize and improve some results.
作者 程舰 李必文
出处 《数学杂志》 CSCD 北大核心 2004年第4期421-425,共5页 Journal of Mathematics
基金 湖北省教育厅重大项目基金资助 (2 0 0 4B0 0 0 0 2 ) 湖北师范学院创新基金资助项目
关键词 正周期解 Lotka—Volterra竞争系统 时滞 重合度 positive periodic solution Lotka-Volterra competitive system coincidence degree.
  • 相关文献

参考文献8

二级参考文献18

  • 1陆忠华,陈兰荪.周期系数三种群Lotka-Volterra混合模型分析[J].纯粹数学与应用数学,1995,11(2):81-85. 被引量:13
  • 2陈伯山.n阶非自治Volterra-Lotka竞争系统有界解的存在性和吸引性[J].系统科学与数学,1996,16(2):113-118. 被引量:6
  • 3柯益华 孙学梅.厌氧消化过程的微生物生态模型[J].生物数学学报,1992,7(3):50-58.
  • 4Montes de Oca F, Zeeman M L. Balancing Survival and Extinction in Nonautonomous Competitive Lotka-Volterra Systems[J]. J Math Anal Appl,1995,192(2):360~370.
  • 5Montes de Oca F, Zeeman M L. Extinction in Nonautonomous Competitve Lotka-Volterra Systems[J].Proc Amer Math Soci,1996,124(12) :3677~3687.
  • 6Redheffer R. Nonautomous Lotka-Volterra Systems I [J]. J Diff Equs,1996,127(3) :519~541.
  • 7Redheffer R. Nonautomous Lotka-Volterra Systems Ⅱ [J]. J Diff Equs, 1996,132 ( 1 ) : 1~ 20.
  • 8Tiner A. An Interative Scheme for the N-Competing Species Problem[J]. J Diff Equs, 1995,116 (1) :i~15.
  • 9Tiner A. On the Asymptotic Behaviour of Some Population Models II [J]. J Math Anal Appl, 1996,197(1) :249~285.
  • 10Mclnerneg M J, Bryant M P. Biomass Conversion Processes for Energy and Fuels. New York: PlenumPress, 1980

共引文献17

同被引文献17

  • 1李必文,程舰.一类具时滞的中立型Lotka-Volterra模型的周期解(英文)[J].数学杂志,2004,24(2):221-225. 被引量:3
  • 2彭世国,朱思铭.一类无穷时滞微分系统的周期解和全局渐近稳定性[J].应用数学学报,2004,27(3):416-422. 被引量:3
  • 3李必文,余盛利,曾宪武.Lotka-Volterra型N-种群自治竞争系统的一些新结果[J].应用数学学报,2004,27(3):556-564. 被引量:6
  • 4Xu Rui, Chen Lansun, Hao Feilong. Periodic solutions of a discrete time Lotka-Volterra type food- chain model with delays[J!. Applied Mathematics Computation, 2005, 171(1): 91-103.
  • 5Xu Rui, Ma Zhien. Stability and Hopf bifurcation in a ratio-dependent predator - prey system with stage structure[J]. Chaos, Solitons and Fractals, 2008, 38(3): 669-684.
  • 6Hu Zhixing, Gao Guangke, Ma Wanbiao. Dynamics of a three-species ratio-dependent diffusive model[J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 2106-2114.
  • 7Li Wenling, Wang Linshan. Stability and bifurcation of a delayed three-level food chain model with Beddington - DeAngelis functional response[J]. Nonlinear Analysis: Real World Applications, 2009, 10(4): 2471-2477.
  • 8Gan Qintao, Xu Rui, Yang Pinghua. Bifurcation and chaos in a ratio-dependent predator - prey system with time delay[J]. Chaos, Solitons and Fractals, 2009, 39(4): 1883-1895.
  • 9Gan Qintao, Xu Rui, Zhang Xiao, Yang Pinghua. Travelling waves of a three-species Lotka Volterra food-chain model with spatial diffusion and time delays [J]. Nonlinear Analysis: Real World Appli- cations, 2010, 11(4): 2817-2832.
  • 10Kuang Y. Delay differential equation with applications in population dynamics[M]. New York: Aca- demic Press, 1993.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部