期刊文献+

结构优化中的混合变量应力约束近似方法 被引量:2

MIXED VARIABLES APPROXIMATION METHOD FOR STRESS CONSTRAINTS IN STRUCTURAL OPTIMIZATION
下载PDF
导出
摘要 提出一种处理结构优化应力约束的新近似方法。以往一般直接对应力约束按设计变量近似,本文用近似内力间接近似应力约束以得到更高的近似质量。根据对内力和设计变量关系分析,提出了内力按混合变量一阶泰勒展开的高质量近似方法。近似优化问题用约束变尺度法求解。最后给出了几个典型例题,结果表明该方法简单、有效、可靠。 A new approximation method for dealing with stress constraints in structural optimization is presented. In previous method, it has been common to create directly an approximation of stress constraints with respect to the design variables. In present method, the stress are, instead indirectly approximated by approximated internal force of the member to make the approximate quality better. Based on analysing to relationship between the force and the desgin variables, It is proposed that the force is approximated by the first Taylor series expansion in terms of the mixed variables, which is of high quality. The approximated problem is solved by variable metric method for constrained optimization. Finally, typical examples are offered and compared with publised results, which show the method is simple, efficient and reliable.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 1993年第4期112-119,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金
关键词 结构优化 结构近似分析 航空器 structural optimization, structural approximate reanalysis, constrained variable metric method.
  • 相关文献

参考文献1

  • 1S. P. Han. A globally convergent method for nonlinear programming[J] 1977,Journal of Optimization Theory and Applications(3):297~309

同被引文献20

  • 1刘英卫.序列响应面法及其在飞机结构可靠性分析中的应用[J].洪都科技,1994(1):1-6. 被引量:5
  • 2隋允康,彭细荣,叶红玲.应力约束全局化处理的连续体结构ICM拓扑优化方法[J].工程力学,2006,23(7):1-7. 被引量:17
  • 3VANDERPLAATS G N, SALAJEGHEH E. New approximation method for stress constraints in structural synthesis[J]. AIAA Journal, 1989,27 (3) : 352- 358.
  • 4REDHE M, GIGER M, NILSSON L. An investigation of structural optimization in crashworthiness design using a stochastic approach[J].Structural and Multidisciplinary Optimization ,2004,27(6) : 446-459.
  • 5LI G, WANG H. Two-level optimization of airframe structures using response surface approximation[J]. Structural and Multidisciplinary Optimization, 2000,20(2) : 116-124.
  • 6KEULEN F V, VERVENNE K. Gradient-enhanced response surface building[J].Structural and Multidisciplinary Optimization, 2004,27(5) : 337-351.
  • 7MIRO-QUESADA G, CASTILLO E D. An enhanced recursive stopping rule for steepest ascent searches in response surface methodology[J]. Communications in Statistics-Simulation and Computation, 2004,33(1):201-28.
  • 8MYERS R H, MONTGOMERY D C, et al. Response surface methodology: a retrospective and literature survey[A]. Journal of Quality Technology [C]. 2004,36(1) : 53-77.
  • 9SUI Y K, ZHANG L X. Sensitivity analysis and cross-sectional optimization of truss structure using RSM[A]. The International Conference on Computational Methods[C]. December 15-17,2004, Singapore.
  • 10Yang R J, Chen C J. Stress-based topology optimization [ J ]. Structural and Muhidisciplinary Optimization, 1996, 12 ( 2-3 ) : 98- 105.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部