期刊文献+

抓握结构中弹性棒变形的P-稳定性 被引量:4

P-Stability for the Deformations of Elastic Rod in Gripper Structure
下载PDF
导出
摘要 研究抓握结构中弹性棒变形的P-稳定性.将存在于机械手的抓握结构和机器人行走系统中的一类弹性单元抽象为变形直弹性棒,通过建立相应的物理和数学模型——常微分方程的边值问题,利用流型法画出数学模型的分支图,得到系统的多解性,借助Liapunov-Schmidt方法,通过建立分支方程,得到相应弹性变形的P-稳定性. The P-stability for deformations of a straight elastic rod in gripper structure is studied. The elastic parts in the gripper structure of a manipulator and knee joint in a robot are simplified into a deformed straight elastic rod. A boundary value problem for a pendulum equation is abstracted as the mathematical model to represent the deformation of the elastic rod. The bifurcation diagram of the mathematical model is obtained by manifold method. With the aid of Liapunov-Schmidt method and the bifurcation equation, the multiplicity and P-stability of solutions of the deformed elastic rod are achieved.
作者 殷先军
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2004年第6期559-562,共4页 Transactions of Beijing Institute of Technology
基金 北京市自然科学基金资助项目(1042007)
关键词 抓握结构 弹性变形 P-稳定性 分支图 Liapunov-Schmidt方法 gripper structure elastic deformation P-stability bifurcation diagram Liapunov-Schmidt method
  • 相关文献

参考文献8

  • 1Tvergaard V. Studies of elastic-plastic instabilities[J]. Journal of Applied Mechanics, 1999,66:3-9.
  • 2Leipholz H. Stabilitaetstheorie[M]. Stuttgart: B. G. Teubner, 1968.
  • 3Chow S N, Hale J K. Methods of bifurcation theory[M]. New York: Springer-Verlag, 1982.
  • 4Yin Xianjun, Wang Xiu'e. On circular elastic rods as nonlinear springs and gripper elements[J]. International Journal of Engineering Science, 2002,40: 231-238.
  • 5Timoshenko S P, Gere J M. Mechanics of materials[M].[s.l]: Nostrand Peinhold Company, 1972.
  • 6Zeidler E. Nonlinear functional analysis and its application[M]. New York: Springer-Verlag, 1992.
  • 7秦元勋 王联 王慕秋.运动稳定性理论及其应用[M].北京: 科学出版社,1981..
  • 8Taylor M E. Partial differential equations Ⅲ-Nonlinear equation[M]. New York: Springer-Verlag, 1996.

同被引文献18

  • 1刘鸿文.材料力学[M].北京:高等教育出版社,2000..
  • 2刘鸿文.材料力学[M].高等教育出版社,2002..
  • 3Chow S N, Hale J K. Methods of Bifurcation Theory[M]. New York: Springer Verlag, 1982. 101 - 125.
  • 4Yin Xianjun, Wang Xiu'e. On circular elastic rods as nonlinear springs and gripper elements [ J ]. International Journal Engineering Science, 2002, 40(3):231-238.
  • 5Yin Xianjun. On Large Deformations of Elastic Circular Arcs[M]. Aachen: Shaker Verlag, 2003. 2 -137.
  • 6Yin Xianjun, Wang Xiu'e. Qualitative study on multiplicity of largely deformed elastic half rings[J]. European Journal of Mechanics A/Solids, 2003, 22(3):463-474.
  • 7Zeidler E. Nonlear Functional analysis and its application(IV), Application to mathematical physics[M]. New York: Springer Verlag, 1998. 112- 150.
  • 8Buttazzo G, Giaquinta M, Hildebrandt S. Onedimensional variational problem [M]. Oxford:Clarendon Press, 1998. 100-134.
  • 9Chow S N.Hale J K.Methods of Bifurcation Theory[M].New York:Springer Verlag,1982.101-125.
  • 10Yin Xianjun.Wang Xiu'e.On circular elastic rods as nonlinear springs and grip-per elements[J].International Journal Engineering Science,2002,40(3):231-238.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部