摘要
在这篇文章里,我们利用射影几何中常用的齐次坐标记法把y_n+1=(y_n+α)/(y_(n-1)+β)线性化表示,从而得到了方程有最小正周期m周期解的一个充要条件,作为应用和例子,我们给出了最小正周期m=1,2,3,5的一般表达式,并证明了系统不存在最小正周期m=4的周期解。
We use the homogeneous coordinates of the projective geometry to establish the linearzed
equation of x_(n+1)=Ax_n+B/Cx_(n-1)+D, present a sufficient and nessary conditions for y_(n+1)=y_n+α/y_(n-1)+β, having
periodic solutions. As application,we establish the generality equations having periodic solutions with
period one, two, three and five,further more, proof there are not periodic solution with four.
出处
《工程数学学报》
CSCD
北大核心
2004年第4期657-660,627,共5页
Chinese Journal of Engineering Mathematics
关键词
离散系统
齐次坐标
周期解
discrete systems
homogeneous coordinates
periodic solutions