期刊文献+

广义拟变分不等式解集的稳定性及本质连通区的存在性 被引量:10

THE STABILITY AND THE EXISTENCE OF ESSENTIAL COMPONENTS OF THE SOLUTION SETS FOR GENERALIIED QUASI-VARIATIONAL INEQUALITIES
下载PDF
导出
摘要 在赋范线性空间下,讨论广义拟变分不等式解集的稳定性,证明了满足一定连续性和凸性条件的广义拟变分不等式问题构成的空间M中,大多数(在Baire分类意义下)广义拟变分不等式问题的解集是稳定的,并证明了M中每一个广义拟变分不等式的解集至少存在一个本质连通区。 This paper studies the stability of the solution sets for generalized quasi-variational inequality problems.It prove that ,in the space M consisting of generalized quasi-variational inequality problems satisfying some convexity and continuity conditions, most generalized quasi-variational inequality problems(in the sense of Baire category) have stable solutions sets, and that for each problem in M, it's solution set possesses at least one essential component.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2004年第2期105-112,117,共9页 Journal of Nanchang University(Natural Science)
基金 江西省自然科学基金资助项目(0111006)
关键词 广义拟变分不等式(GQVIP) usco映射 本质解 本质连通区 generalized quasi-variational problem(GQVIP) usco mapping essential solution essential component
  • 相关文献

参考文献11

  • 1Yu J, Luo Qun. On Essential Components of the Solution Set of Generalized Games [J ]. J Math Anal And Appl,1999, 230: 303 - 310.
  • 2Fort M K Jr. Essentianl and Nonessential Fixed Points [J]. Amer J Math, 1950, 72: 315 - 322.
  • 3Wu W T, Jiang J H. Essential Equilibrium Points of nperson. Non- cooperative Games [J]. Sci Sinica, 1962,11:1 307 - 1 322.
  • 4Kohlberge E, Mertens J F. On the Strategic Stability of Equilibria[J]. Econometrics, 1986, 54:1 003 - 1 037.
  • 5Isac G and Yuan XZ. The Exist of essencially connected Components of Solutions for Vairational Inequalities[A].F Giannesse (ed), Vector Variational Inequalities and Vector Equilibria[C]. Netherlands: Kluver Acadmic Publishers, 2000. 253 - 265.
  • 6Aubin J P, Ekeland I. Applied Nonlinear Analysis[M].New York:John Wiley and Sons, 1984.
  • 7R B Holmes. Geometric Function Analysis and Its Applications[M]. Springer- Verlay, New York, 1975.
  • 8Fort MK. Points of Continuity of Semi- continuous Functions[ J ]. Publ Math Debrecen, 1951,2:100 - 102.
  • 9Shih M H, Tan K C. Generalized Quasi - Variation Inequalities in Locally convex Topological Vector Spaces [J]. J Math Anal and Appl, 1985, 226:333- 343.
  • 10杨辉,俞建.广义向量似变分不等式解集的通有稳定性及本质连通区的存在性[J].系统科学与数学,2002,22(1):90-95. 被引量:16

二级参考文献2

共引文献15

同被引文献91

  • 1张文燕,陈纯荣,李声杰.集值映射的广义对称向量拟平衡问题(英文)[J].运筹学学报,2006,10(3):24-32. 被引量:5
  • 2彭定涛,曹素元.上图像拓扑与多目标优化问题加权解的通有稳定性[J].运筹学学报,2006,10(4):81-88. 被引量:10
  • 3余孝军,杨辉.广义向量平衡问题解的通有稳定性[J].贵州科学,2007,25(2):22-26. 被引量:1
  • 4Xiang S W, Zhou Y H. On Essential Sets and Essential Components of Efficient Solutions for Vector Optimization Problems[ J]. Journal of Mathematical Analysis and Applications, 2006, 315 : 317 - 326.
  • 5Fu J Y. Symmetric vector quasi - equilibrium problems [ J ]. Journal of Mathematical Analysis and Application, 2003, 285:708-713.
  • 6Ali P Farajzadeh. On the Symmetric vector quasi -equilibrium problems [ J] Mathematical analysis and applications, 2006, 322 : 1 099 - 1 110.
  • 7Aubin J P , Ekeland I. Applied Nonlinear Analysis [ M]. New Yourk: John Wiley and Sons, 1984.
  • 8Fort M K Jr. Points of Continuity of Semi - continuous Functions[J]. Publication Mathematics Debrecen,1951, 2:100 - 102.
  • 9Chen J C, Gong X H. The Stability of Set of Solutions for Symmetric Vector Quasi - equilibrium Problems [ J ], Journal of Optimization Theory and Applications, 2008, 136.
  • 10T Tanaka. Generalized Quasi - Convexities Cone Saddle Points and Minimax Theorems for Vector Valued Functions[ J ], Journal of Optimization Theory and Applications, 1994, 81:355-377.

引证文献10

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部