期刊文献+

具阶段结构的自食生态系统的周期解 被引量:3

The Existence of Periodic Solution for a Competitive Ecosystem with Stage-structure and Cannibalism
下载PDF
导出
摘要 讨论了两种群竞争系统解的动力学行为,其中一种群分幼年、成年两阶段。考虑自食的影响,利用重合度理论中的延拓定理,得到了该系统周期解存在的充分条件。 A two species competitive ecosystem with stage-structure and cannibalism is considered. By using the continuation theorem of coincidence degree theory, a sufficient condition is obtained for the existence of a positive solution of this system.
出处 《工程数学学报》 CSCD 北大核心 2004年第4期514-518,共5页 Chinese Journal of Engineering Mathematics
基金 湖北省教育厅重大课题基金(2004Z00002) 湖北师范学院创新基金 重点基金
关键词 阶段结构 竞争系统 自食 周期解 重合度 stage structure competitine system cannidalism periodic solution coincidence degree
  • 相关文献

参考文献10

二级参考文献9

  • 1SongXinyu ChenLansun.Persistence and global stability for nonautonomous predator-prey system with diffusion and time delay[J].Comput. Math. Appl,1998,35(6):33-40.
  • 2Zhang Jingru, Chen Lansun, Chen Xiudong, Persistence and global stability for bwo species nonautonomous competition Lotka-Volterra patch system with time delay, Nonlinear Anal. , 1999,37:1019-1028.
  • 3Song xinyu, Chen Lansun, Persistence and periodic orbits for two-species predator-prey system with diffusion, Canad. Appl. Math. Quart. ,1998,6(3):233-244.
  • 4Gaines, R. E., Mawhin, J. L., Coincidence Degree and Nonlinear Differential Equations. Berlin. Springer-Verlag, 1977.
  • 5Li Yongkun, On a periodic neutral delay Lotka-Volterra system, Nonlinear Anal. , 2000,39 (6) : 767-778.
  • 6Ma Shiwang,Wang Zhicheng, Yu Jianshe, An abstract existence theorem at resonance and its applications,J. Differential Eqautions, 1998,145:274-294.
  • 7Ma Shiwang,Wang Zhicheng, Yu J ianshe, Coincidence degree and periodic solutions of Duffing equations,Nonlinear Anal. , 1998,34(3) :443-460.
  • 8Wang W,Computer Math Appl,1997年,33卷,1期,83页
  • 9陈兰荪,数学生态学模型与研究,1988年,129页

共引文献39

同被引文献18

  • 1陆志奇,李静.基于比率的P-P时滞系统的持久性与全局吸引性(英文)[J].河南师范大学学报(自然科学版),2004,32(3):5-9. 被引量:2
  • 2张江山,孙树林.捕食者有病的生态-流行病模型的分析[J].生物数学学报,2005,20(2):157-164. 被引量:30
  • 3Barbalat I. System d' equation differentielles doscillations nonlinears[J]. Rev Roumaine Math Pures Appl, 1959,4(2): 267-270.
  • 4Yun Rong, Existence of almost periodic solution of functional differential equation[J]. Ann of Diff Sqs, 1991,7 (2) : 234-242.
  • 5GOH B S.Global stability in two species interactions[J].Math Biol,1976,(3):313 -318.
  • 6HASTINGS A.Global stability in two species systems[J].Math Biol,1978,(5):399 -403.
  • 7AHMAD S.On the nonautonomous Lotka-Volterra competition equations[J].Proc Amer Math Soc,1993,117:199 -210.
  • 8HE X Z.Stability and delays in a predator-prey system[J].Math Anal Appl,1996,198:355 -370.
  • 9LI Yong-kun.Periodic solutions of n-species competition system with time delays[J].Biomath,1997,12 (1):1-18.
  • 10LO Sheng-dai.Nonconstant periodic solutions in predator-prey system with continuous time delay[J].Math Biosci,1981,53:149-157.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部