期刊文献+

提高混沌同步保密通信安全性的设计方案研究 被引量:5

Research on Chaotic Synchronized Secure Communication Schemes to Improve Security
下载PDF
导出
摘要 在分析几种典型的混沌同步保密通信方案及针对混沌同步保密通信的分析破译方法的基础上,研究了一个新的基于Lorenz方程的主动一被动同步保密通信方案,其特点是具有动态密钥,从而对上述攻击方法具有抗破译能力.计算机仿真实验和安全性测试分析结果均表明,该方案的同步效果好、安全性高,达到用基于相空间重构、基于混沌同步的分析方法难以破译的效果。 The security of several typical chaotic synchronized secure communication schemes , as well as the respective unmasking methods are studied to find the way to improve the security. A new secure communication scheme based on active-passive decomposition using parameters perturbation technique, which makes it has a kind of dynamic secrete key, is analyzed in this paper. The dynamic secrete key contributes to the capacity against the unmasking methods. Computer simulation and security test results demonstrate that the scheme is high in security and good in synchronization properties , and that it is safe to the attack of the unmasking methods mentioned in this paper.
出处 《电子与信息学报》 EI CSCD 北大核心 2004年第7期1057-1063,共7页 Journal of Electronics & Information Technology
基金 北京市自然科学基金(4002004) 北京市教育委员会科技发展计划(00KJ048)资助课题
关键词 混沌 保密通信 同步 破译 安全性 Chaos, Secure communication, Synchronization, Unmasking, Security
  • 相关文献

参考文献9

二级参考文献56

  • 1方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 2方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展,1996,16(1):1-74. 被引量:137
  • 3[1] National Bureau of Standards. FIPS PUB 46 Data Encryption Standards[S]. Washington DC : Federal Information Processing Standard, US Dept. Of Commerce, 1977.
  • 4[2]Revest R L, Shamir A, and Adleman L M. A method for obtaining digital signature and public-key cryptosystems[J]. Communications of the ACM, 1978,21:120~126.
  • 5[3]Diffie W and Hellman M F. New directions in cryptograghy[J]. IEEE Transactions in Information Theory, 1976,IT-22:644~654.
  • 6[4]ElGamal T. A public key cryptosystem and a signature scheme base on discret logarithm[A]. Advances in Cryptology, Proceedings of CRYPTO'84[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1985,196:10~18.
  • 7[5]Koblitz N. Elliptic curve cryptosystems[J].Mathematics of Computation, 1987,(48):203~209.
  • 8[6]Miller V S. Use of elliptic curves in cryptograghy[A]. Advances in Cryptology, Proceedings of CRYPTO'85[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1986,218:417~426.
  • 9[7]Fujisaka H and Yamada T. Stability theory of synchronized motion in coupled-oscillator systems[J]. Porg Theor Phys, 1983,69:32~47.
  • 10[8]Pecora L M and Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64:821~823.

共引文献134

同被引文献37

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部