摘要
Gd 2O 3∶Eu 3+ phosphors were prepared by urea homogeneous precipitation with different surfactant and sol-gel method. XRD patterns show that all the obtained samples are in cubic Gd 2O 3, and the results of FTIR and fluorescent spectra conformed that OP is a good surfactant for preparing the Gd 2O 3∶Eu 3+ phosphors. The SEM photographs show that the particles prepared by urea homogeneous precipitation method are all spherical and well-dispersed, and grain morphology can be controlled by different surfactant. XRD and SEM indicate that the particle sizes prepared by sol-gel method are in the range of 5~30 nm, and the grain sizes increase with increasing of heated temperatures. Luminescence spectra indicat that the main emission peaks of all samples are at 610 nm, the intensities are different from samples prepared with different surfactant and the luminescence intensities increase with increasing of annealed temperatures.
Gd 2O 3∶Eu 3+ phosphors were prepared by urea homogeneous precipitation with different surfactant and sol-gel method. XRD patterns show that all the obtained samples are in cubic Gd 2O 3, and the results of FTIR and fluorescent spectra conformed that OP is a good surfactant for preparing the Gd 2O 3∶Eu 3+ phosphors. The SEM photographs show that the particles prepared by urea homogeneous precipitation method are all spherical and well-dispersed, and grain morphology can be controlled by different surfactant. XRD and SEM indicate that the particle sizes prepared by sol-gel method are in the range of 5~30 nm, and the grain sizes increase with increasing of heated temperatures. Luminescence spectra indicat that the main emission peaks of all samples are at 610 nm, the intensities are different from samples prepared with different surfactant and the luminescence intensities increase with increasing of annealed temperatures.
基金
ProjectsupportedbytheNationalNaturalScienceFoundationofChina ( 2 0 0 710 3 1)