摘要
研究了免疫学中的一个基本数学模型——血红细胞系生成的数学模型.证明了这个含时滞的反应扩散方程组的初边值问题整体解的存在性、唯一性和非负有界性,平衡解的存在唯一性及稳定性。
A basic model in immunology, that of the formation of hemopoiesis, and the corresponding initial and boundary value problem for a reaction-diffusion system with time delay is studied. By using the upper and lower method and a well-defined iterated scheme, the existence, uniqueness, boundedness, and non-negativeness of the global solutions are proved. Especially the uniqueness of equilibrium solutions under some conditions are proved . The asymptotic behavior of the equilibrium solutions are discussed. The sufficient conditions for stabiMty of the equilibrium solutions are given.
出处
《北京理工大学学报》
EI
CAS
CSCD
1993年第1期1-9,共9页
Transactions of Beijing Institute of Technology
基金
高等学校博士学科点专项科研基金
关键词
免疫学
血细胞
有界性
血红细胞
immunology
blood cells
stability
boundedness/hemopoiesis