期刊文献+

一种基于模式识别的刀具磨损监测方法 被引量:1

Monitoring of Cutting-Tool Wear Based on Pattern Recognition
下载PDF
导出
摘要 将刀具磨损状态的在线监测作为模式识别中的两类模式分类问题,从切削振动信号中抽取特征向量;根据投影原理构造了最佳特征平面.在此基础上提出了一种具有自学习功能的G(D)判别函数,对车削试验的磨损状态进行分类,确诊率达95%,漏诊率小于0.6%,判别时间少于15s,适用于在线监测。 The study of on-line tool wear monitoring is transformed into a problem of 2-class classifier design in statistical pattern recognition. Feature vector is extracted from vibration signal in the cutting process. The optimizing feature plane is formed according to projection theory. On the basis of this a discrimination function the G(D), having self-learning characteristics, has been proposed. It classifies situations of tool wear as the G(D). The results indicate that the recognition rate is 95%, the leak away rate less than 0.6%, discrimination time less than 15s on a microcomputer PC 286. The proposed method can provide an on-line monitoring of tool wear in the cutting process.
出处 《北京理工大学学报》 EI CAS CSCD 1993年第3期297-303,共7页 Transactions of Beijing Institute of Technology
关键词 模式识别 特征抽取 刀具 磨损 监测 pattern recognition feature extraction classifiers/tool wear
  • 相关文献

参考文献7

  • 1周冠雄,模式分类,1988年
  • 2边肇祺,模式识别,1988年
  • 3卢文祥,华中理工大学学报,1987年,15卷,2期,105页
  • 4刘纯燕,华中理工大学学报,1985年,13卷,2期,95页
  • 5梅志坚,华中理工大学学报,1985年,13卷,2期,78页
  • 6安鸿志,时间序列的分析与应用,1983年
  • 7周泽华,金属切削原理,1980年

同被引文献5

  • 1张德远,韩云台,陈鼎昌.钛合金振动攻丝刀具破损监测的研究[J].航空学报,1994,15(2):181-187. 被引量:2
  • 2DE-YUAN Z, DING-CHANG C. Relief-face friction in vibration tapping [J]. Int J Mech Sci, 1998, 40(12):1209-1222.
  • 3MASAHIKO J, KUNIO O, MASAO M. Small hole tapping of difficult-to-cut materials by means of step vibration[J]. Technical Paper-society of Manufacturing Engineers, 1999, 173:1-6.
  • 4COIFMAN R R, WICKERHAUSER M V. Entropy-based algorithms for best-bais selection[J]. IEEE Trans on Information Theory, 1992, 38:713-718.
  • 5叶大鹏.[D].福州:福建农林大学,1999.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部