期刊文献+

Formation of α,α'-Bis(substituted benzylidene)cycloalkanones from Masked Aldehydes Promoted by Samarium(III) Triiodide

Formation of α,α'-Bis(substituted benzylidene)cycloalkanones from Masked Aldehydes Promoted by Samarium(III) Triiodide
下载PDF
导出
摘要 Diacetates 1 and N-[(1-benzotriazol-l-yl)alkyl]amides 2, both masked forms of aldehydes, could undergo deprotection and condensation with cycloalkanones in a one-pot procedure promoted by samarium(III) iodide (SmI3) to afford α,α'-bis(substituted benzylidene) cycloalkanones in good yields. Diacetates 1 and N-[(1-benzotriazol-l-yl)alkyl]amides 2, both masked forms of aldehydes, could undergo deprotection and condensation with cycloalkanones in a one-pot procedure promoted by samarium(III) iodide (SmI3) to afford α,α'-bis(substituted benzylidene) cycloalkanones in good yields.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第5期511-514,共4页 中国化学快报(英文版)
关键词 Samarium(III) triiodide α α'-bis(substituted benzylidene)cycloalkanone 1 1-diacetate N-[(l-benzotriazol-1-yl)alkyl]amide. Quinolone antibacterial agents have emerged as one of the dominant classes Samarium(III) triiodide,α,α'-bis(substituted benzylidene)cycloalkanone,1,1-diacetate, N-[(l-benzotriazol-1-yl)alkyl]amide. Quinolone antibacterial agents have emerged as one of the dominant classes
  • 相关文献

参考文献13

  • 1[1](a) H. B. Kagan, Chem. Rev., 2002, 102, 1805; (b) G. A. Molander, Chem. Rev., 1992, 92, 29;(c) G. A. Molander, C. R. Harris, Chem. Rev., 1996, 96, 307; (d) G. A. Molander, Acc. Chem. Res., 1998, 31, 603; (e) H. B. Kagan, J. Chem. Soc. Perkin Trans. 1, 2001, 2727; (f) P. G. Steel, J. L. Namy, Tetrahedron, 1986, 42, 6573.
  • 2[2]Y. P. Yu, R. H. Lin, Y. M. Zhang, Tetrahedron Lett., 1993, 34, 4547.
  • 3[3]T. K. Ying, W. L. Bao and Y. M. Zhang, Synth. Commun., 1996, 26, 2905.
  • 4[4](a) S. H. Wu, Synth Commun, 24, 1994, 2173.(b) Y. Ukaji, N. Koumoto ( T. Fujiaawa, Chem. Lett., 1989, 1255.
  • 5[5](a) Y. P. Yu, Y. M. Zhang ( R. H. Lin, Synth. Commun., 1993, 23, 1973(b) W. L. Bao ( Y. M. Zhang, Org. Prep. Proced. Int., 1997, 29, 335.
  • 6[6]W. L. Bao, Y. M. Zhang, T. K. Ying, Synth. Commun., 1996, 26, 503.
  • 7[7]General procedure for the synthesis of (,('-bis(substituted benzylidene)cycloalkanones (4): Under nitrogen atmosphere, samarium powder (0.15 g, 1.0 mmoL) and iodide (0.39 g, 1.55 mmol) in dry THF (10 mL) were stirred for 1 hour at room temperature to obtain a yellow suspension, to which was added a solution of 1 mmol of 1,1-diacetates or N-[(1-benzotriazol-1-yl)alkyl]amides and 1 mmol of cycloalkanone in 2 mL of THF, the resulting mixture was then refluxed till the starting materials disappeared (monitored by TLC). After evaporating most of the THF, 3 mL of hydrochloric acid (0.2 mol/L) was added. Usually the products were precipitated, subsequent filtration and recrystallization from methanol afforded the pure products. If no precipitate was produced after the adding of hydrochloric acid, the mixture was extracted with diethyl ether (3 × 15 mL). The combined extracts were washed with saturated solution of Na2S2O3, then a saturated solution of NaCl and dried over anhydrous Na2SO4. After evaporating the solvent under reduced pressure, the crude solid products were obtained. Recrystallization from 95% EtOH or MeOH afforded the products in pure form.
  • 8[8]Physical data: 3a. m.p. 184~186(C, (lit.9 188~189(C); 3b. m.p. 227~229(C, (lit.10 231(C); 3c. m.p. 242~244(C, (lit.10 245~246(C); 3d. m.p. 213~215(C, (lit.10 219~220(C); 3e. m.p. 182-188(C (accompanied by decomposition); 1H NMR (CDCl3, 400 MHz) δ(ppm): 7.52 (s, 2H), 7.36~7.38 (m, 4H), 7.21~7.25 (m, 2H), 2.62 (s, 4H); IR (KBr) ((cm-1): 3060, 2933, 1704, 1633, 1578, 1554; MS (70eV) m/z (%): 361 (M+-35, 100), 363 (95.86), 325 (12.72), 291 (6.49), 255 (5.49), 226 (8.46), 202 (18.47), 161 (13.98), 149 (38.26), 113 (47.65); Anal. Calcd for C19H12Cl4O: C 57.32, H 3.04; Found C 57.21, H 3.14; 3f. m.p.247-249(C; 1H NMR (CDCl3, 400 MHz) δ(ppm): 7.36 (s, 2H), 7.23~7.25 (d, 4H, J = 8.8 Hz), 7.03~7.05 (d, 2H, J = 7.6 Hz), 6.11 (s, 4H), 3.04 (s, 4H); IR (KBr) ((cm-1):2909, 1682, 1632, 1612, 1597; MS (70eV) m/z (%):349 (M++1, 22.58), 348 (M+, 100), 347 (91.49), 102 (97.96); Anal. Calcd for C21H16O5: C 72.41, H 4.63; Found C 72.36, H 4.65; 3g. m.p.216-218(C (lit.6 215-216(C); 3h. m.p. 150-152(C (lit.11 152.3~152.6(C); 3i. m.p. 208-210(C; 1H NMR (CDCl3, 400 MHz) δ(ppm): 7.74 (s, 2H), 7.52~7.53 (m, 6 H), 7.33 (t, 2 H, J = 8.0 Hz), 3.13 (s, 4 H); IR (KBr) ((cm-1): 3059, 2920, 1687, 1623, 1603, 1554, 1180; MS (70 eV) m/z (%): 420 (M+, 19.30), 419 (25.69), 418 (41.02), 417 (42.56), 416 (M+, 20.91), 339 (71.48), 337 (72.44), 129 (42.56), 115 (100); Anal. Calcd for C19H14Br2O: C 54.58, H 3.38; Found C 54.52, H 3.43; 4a. m.p. 115-116(C (lit.12 116~117(C); 4b. m.p. 144-147(C (lit.13 146~148 (C); 4c. m.p. 171-173(C (lit.13 171~173(C).
  • 9[9]M. Zheng, L. Wang, J. Shao, Q. Zhong, Synth. Commun., 1997, 27, 351.
  • 10[10]H. Frey, G. Behmann, G. Kaupp, Chem. Ber., 1987, 120, 387.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部