摘要
Automatic speech recognition under conditions of a noisy environment remains a challenging problem. Traditionally, methods focused on noise structure, such as spectral subtraction, have been em-ployed to address this problem, and thus the performance of such methods depends on the accuracy in noise estimation. In this paper, an alternative method, using a harmonic-based spectral reconstruction algo-rithm, is proposed for the enhancement of robust automatic speech recognition. Neither noise estimation nor noise-model training are required in the proposed approach. A spectral subtraction integrated autocorrela-tion function is proposed to determine the pitch for the harmonic model. Recognition results show that the harmonic-based spectral reconstruction approach outperforms spectral subtraction in the middle- and low-signal noise ratio (SNR) ranges. The advantage of the proposed method is more manifest for non-stationary noise, as the algorithm does not require an assumption of stationary noise.
Automatic speech recognition under conditions of a noisy environment remains a challenging problem. Traditionally, methods focused on noise structure, such as spectral subtraction, have been em-ployed to address this problem, and thus the performance of such methods depends on the accuracy in noise estimation. In this paper, an alternative method, using a harmonic-based spectral reconstruction algo-rithm, is proposed for the enhancement of robust automatic speech recognition. Neither noise estimation nor noise-model training are required in the proposed approach. A spectral subtraction integrated autocorrela-tion function is proposed to determine the pitch for the harmonic model. Recognition results show that the harmonic-based spectral reconstruction approach outperforms spectral subtraction in the middle- and low-signal noise ratio (SNR) ranges. The advantage of the proposed method is more manifest for non-stationary noise, as the algorithm does not require an assumption of stationary noise.
基金
Supported by the National Natural Science Foundation of China (No. 60072011)