期刊文献+

关于非正则图的全无赘数的上界(英文)

On the total irredundant number of non-regular graphs
下载PDF
导出
摘要 设G =(V ,E)是一个无向图 ,如果S V ,对于任v∈V ,均有v或者它的一个邻点在S -v中没有邻点 ,则称S为G的一个全无赘集 .G中含点数最多 (少 )的极大全无赘集 ,称为上全无赘集 (全无赘集 ) .G的 (上 )全无度Δ(G)给出全无赘数的上界 ,IRt(G) n1+(Δ +1)δ(Δ - 1)Δ而且这个界可达 . Let G=(V,E) be an undirected graph,a set S of vertices in the graph G is called a total irredundant set if,for every vertex v in G,v or one of its neighbors has no neighbor in S-{v}.The total irredundance number ir t(G) is the minimum cardinality of any total irredundanct set,while the upper total irredundance number IR t(G) is the maximal cardinality of any such set.In this paper,we give a upper bound of IR t(G) for a non-regular connected graph G in terms of maximum degree Δ(G),minimum degree δ(G) and its order n.We show that IR t(G)n1+(Δ+1)δ(Δ-1)Δ and the bound is sharp.
出处 《湖南文理学院学报(自然科学版)》 CAS 2004年第2期2-3,11,共3页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 theChinaNationalScienceFoundation[10 2 710 45]andtheEducationCommitteeofHunanProvince
关键词 非正则图 全无赘数 上界 无向图 Upper total irredundance number maximum degree minimum degree neighborhood
  • 相关文献

参考文献7

  • 1[1]B. BOLLOBAS. The irredundance number and maximal degree of a graph[J] .Discrete Math., 1984(49), 197- 199.
  • 2[2]GaBOR BACSo AND ODILE FAVARON. Independence, irredundance, degrees and chromatic nunber in graphs[J]. Discrete Math. ,2002(259) :257 - 262.
  • 3[3]O. FAVARON ET AL.Total irredundance number in graphs[J].Discrete Math. ,2002(256): 115 - 127.
  • 4[4]S.M. HEDETNIEMI. S. T. HEDETNIEMI, D. P. JACOBS, Total irredundance number in graphs:theory and algorithms[J]. Ars Combin., 1983(35) :271 - 284.
  • 5[5]O. FAVARON. A note on the irredundance number after vertex - deletion[J]. Discrete Math., 1993( 121 ) :51 - 54.
  • 6[6]E.H.COCKYANE,O.FAVARON,C.PAYAN AND A. THOMASON. Contributions to the theory of domination, imdependance and irredundance in graphs[J]. Discrete Math., 1981 (33):249- 258.
  • 7[7]B. BOLLABAS AND E. J. COCKYANE. Graph - theoretic parameters concerning domination, independence and irredundance [J] .J.Graph Theory, 1979(3) :241 - 249.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部