摘要
Both the primary resonant solutions and their bifurcations due to time delayed velocity feedbacks used in a self-sustained oscillator with excitation were further investigated. A model was proposed by adding linear and nonlinear time delayed feedbacks to a representative non-autonomous system( with external forcing). The stability condition of the linearized system at trivial equilibrium was discussed, which leads to a critical stability boundary where periodic solutions may occur. The main attention was focused on bifurcations from the primary resonant solutions. It is found that the stable primary resonant solution may appear periodically in the time delay. Meanwhile, the unstable regions for such solutions are also obtained, predicting the occurrence of quasi-periodic motions.
Both the primary resonant solutions and their bifurcations due to time delayed velocity feedbacks used in a self-sustained oscillator with excitation were further investigated. A model was proposed by adding linear and nonlinear time delayed feedbacks to a representative non-autonomous system( with external forcing). The stability condition of the linearized system at trivial equilibrium was discussed, which leads to a critical stability boundary where periodic solutions may occur. The main attention was focused on bifurcations from the primary resonant solutions. It is found that the stable primary resonant solution may appear periodically in the time delay. Meanwhile, the unstable regions for such solutions are also obtained, predicting the occurrence of quasi-periodic motions.
基金
theNationalNaturalScienceFoundationofChina ( 1 0 0 72 0 3 9)