摘要
基于误差平方和准则的模糊c-均值算法(FCM)是一种典型的动态聚类算法,其求解结果通常是局部最优解;当模糊集合之间的并、交、包含运算采用传统定义时,在模糊c-均值聚类结果中还会存在无意义的聚类集。研究表明采用遗传算法进行模糊c-均值聚类(Fuzzyc-meansalgorithmovergeneticalgorithm,GFCM)时,不仅能够消除无意义的聚类集,而且还在一定程度上避免模糊c-均值算法收敛到局部最优解,为此设计编码、选择、配对交叉、变异等步骤。测试数据实验表明采用GFCM算法的结果优于FCM算法。
Fuzzy c-means (FCM) algorithm is dynamic cluster algorithm whose result often is local optimal decision. There often exists insignificant clustering in the result of Fuzzy c-means algorithm when traditional union, Intersection and inclusion work in fuzzy set. Our research indicates there are no insignificant clustering in the result of Fuzzy c-means algorithm over genetic algorithm and partial optimal solution can be avoided with this algorithm to a certain extent. The coding, select, corresponding crossover and mutation operators are designed. Finally we compared the performance of GFCM and FCM with testing data. Results show that the performance of GFCM is far better than FCM.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第6期89-92,共4页
Journal of Chongqing University
基金
重庆市教委科技基金资助项目(030601)