期刊文献+

夹心半群 T(X,Y,θ)上的最小真同余 被引量:7

The Smallest Proper Congruence on Sandwich Semigroups T(X,Y,θ)
下载PDF
导出
摘要 本文讨论了夹心半群T(X,Y,θ)上的同余与集合Y上Tθ-等价关系之间的联系,建立了从夹心半群的同余格C(T(X,Y,θ))到Y上的Tθ-等价关系格Tθeq(Y)的满同态C和从Tθeq(Y)到C(T(X,Y,θ))的单同态γ.讨论了Y上最小真Tθ-等价关系以及半群T(X,Y,θ)上最小真同余存在的条件. The relationship between the congruences on T(X,Y,θ) and the T~θ-equivalences on the set Y is investigated. The homomorphism C from the congruence lattice C(T(X,Y,θ)) onto the T~θ-equivalence lattice T_(eq)~θ(Y) and the homomorphism γ from T_(eq)~θ(Y) into C(T(X,Y,θ)) are established. And the conditions when there exist the smallest proper T~θ-equivalence on Y and the smallest proper congruence on T(X,Y,θ) are discussed.
出处 《数学进展》 CSCD 北大核心 2004年第3期284-290,共7页 Advances in Mathematics(China)
基金 河南省自然科学基金(994052900)
关键词 夹心半群 同余 T^θ-等价关系 sndwich semigroups congruences T~θ-equivalences
  • 相关文献

参考文献10

  • 1Hofmann K H and Magill Jr K D. The smallest proper congruence on S(X) [J]. Glasgow Math. J., 1988,30(2): 301-313.
  • 2Symons J S V. On a generalization of the transformation semigroup [J]. J. Aust. Math. Soc., 1975,19(1):47-61.
  • 3Magill Jr. K D and Subbiah S. Green's relations for regular elements of sandwich semigroups, (Ⅰ) General results [J]. Proc. London Math. Soc., 1975, 30(3): 194-210.
  • 4Magill Jr K D. Semigroup structures for families of functions, (Ⅰ) Some homomorphism theorems [J]. J.Aust. Math. Soc., 1967, 7(1): 81-94.
  • 5Magill Jr K D. Semigroup structures for families of functions, (Ⅱ) Continuous fuctions [J]. J. Aust. Math.Soc., 1967, 7(1): 95-107.
  • 6Pei Huisheng. The α-congruences on S(X) and the S-equivalences on X [J]. Semigroup Froum, 1993,47(1): 48-59.
  • 7Pei Huisheng. Equivalence, α-semigroups and α-congruences [J]. Semigroup Forum, 1994, 49(1): 49-58.
  • 8Pei Huisheng and Xu Yunqing. α-congrungces on Variants of S(X), (Ⅰ) General results [J]. J. Xinyang Teachers College, 1996, 9(2): 106-115.
  • 9Pei Huisheng Xu Yunqing. α-congruences on variants of S(X), (Ⅱ) α- congruences [J]. J. Xinyang Teachers College, 1996, 9(3): 217-225.
  • 10Howie J M. Fundamentals of Semigroup Theory [M]. Oxford University Press, 1995.

同被引文献55

  • 1黄学军.正则单半群的一个充要条件[J].四川师范大学学报(自然科学版),2005,28(2):176-178. 被引量:3
  • 2马敏耀,张传军,林屏峰.有限夹心半群T(X,Y;θ)的正则性与Green关系[J].贵州师范大学学报(自然科学版),2007,25(1):81-84. 被引量:2
  • 3J. M. Howie. An Introduction to Semigroup Theory [ M ]. London : Academic Press, 1976.
  • 4Higgins, Peter M. Techiques of Semigroups Theory [ M ]. Oxford : Oxford University Press, 1922.
  • 5K. D. Magill,Jr and S Subbiah . Green's relations for regular elments of sandwich semigroups, (I) general results [J]. Proc London Math Soc,1975,30(3) :194-210.
  • 6K. D. Magill,Jr and S Subbiah . Green's relations for regular elments of sandwich semigroups, ( Ⅱ ) semigroups of continuous function [ J ]. J. Austral Math Soc, 1978,25 (A) :45-65.
  • 7K. D. Magill, Jr and P. R. Misra. Homomorp hisims of Sandwich Semigroups and Sandwich Near rings [J]. Semigroup Forum, 1993,47 : 168-181.
  • 8K. D. Magill, Jr and P. R. Misra, and U. B. Tewari. Symons' congruence on Sandwich Semigroups [ J ]. Czech Math. J. , 1983,108 (33) :221-236.
  • 9J. B. Hickey. Semigroup under a sandwich operation [ J ]. Proc Edinburgh Math Soc, 1975,19:371-382.
  • 10Pei Huisheng. α - Congruences on Variants of S( X), (I) General Results [ J ]. Journal of Xingyang Teachers College, 1996,9(2) : 109-115.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部