期刊文献+

关于一个素数和一个素数的k次方和问题(英文)

On the Sum of a Prime and a κ-power of a Prime
下载PDF
导出
摘要 设k≥2,H_k表示一个正整数n的集合,使对任意的正整数q,同余方程a+b^2≡n(modq)在模q的既约剩余系中有解a,b.D_k(N)表示n≤N,n∈H_k,但不能表成p_1+p_2=n的数的个数,其中p_1,p_2表示素数。则在GRH下, D_k(N) N~[1-(1/(h(k)+1))]+ε,这里k=2,3;h(2)=2,h(3)=8. Let k≥2, H_k denote the set of all numbers n such that a+b^k≡n(modq) has solutions in reduced residues a, b(modq) for any integer q. Let D_k(N) be the number of all n≤N, n∈H_k which cannot be written as p_1+p_2~k=n, where p_1, p_2 denote primes. Then assuming GRH, D_k(N)<< N~[1-(1/k(h(k)+1))]+ε, k=2, 3 for h(2)=2, h(3)=8.
作者 王明强 刘涛
出处 《数学进展》 CSCD 北大核心 2004年第3期363-368,共6页 Advances in Mathematics(China)
基金 Supported by Qufu Normal University(No.XJ02002)
关键词 圆法 大筛法不等式 同余方程 circle method large sieve inequality congruence equation
  • 相关文献

参考文献8

  • 1Briidern J, Perelli A. The addition of primes and power [J]. Can. J. Math., 1996, 48(3): 512-526.
  • 2Mikawa H. On the sum of a prime and a square [J]. Tsukuba J. Math., 1993, 17: 299-310.
  • 3Vaughan R C. On Waring's problem for cubes [J]. J. Reine Angew. Math., 1985, 46: 33-56.
  • 4Vaughan R C. The Hardy-Littlewood Method [M]. Cambridge University Press. 1981.
  • 5Gallagher P X. A large sieve density estimate near σ = 1 [J]. Ivent. Math., 1970, 11: 329-339.
  • 6Titchmarsh E C. The Theory of the Riemann Zeta Function [M]. 2nd ed. oxford: Oxford University Press. 1986.
  • 7Liu jianya, Zhan Tao. On sums of five almost equal prime square [J]. Acta arithmetica, 1996, LXXVII:369-383.
  • 8Meng Xianmeng. On Waring-Goldbach on small arc [J].J. of Shandong university, 1997, 32(3): 255-264.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部