期刊文献+

模糊集中的无限非概率测度熵 被引量:2

Infinite non-probabilistic measure entropy in the setting of fuzzy sets theory
下载PDF
导出
摘要 目的 为得到模糊信息论的一些重要性质和定理。方法 以模糊熵的数学性质为基础,以Shannon熵为工具进行研究。结果 给出了无限非概率测度熵的定义及性质,并对无限非概率测度条件熵及模糊互信息给出了定义,进而研究了其性质并给出了相关定理。结论 其结果深化和发展了模糊信息论的内容。 AimTo get some important properties and theorems for fuzzy information theory.MethodsThe research is based on the property of fuzzy entropy and Shannon entropy.ResultsInfinite Non-probabilistic measure Entropy in the setting of Fuzzy sets Theory is given, some characteristics are described and proved, some theorems and characteristics about infinite non-probabilistic measure conditional entropy and fuzzy mutual entropy are given.ConclusionThe results develop the contents of fuzzy information theory.
机构地区 西北大学数学系
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期263-266,共4页 Journal of Northwest University(Natural Science Edition)
基金 陕西省教育厅自然科学专项基金资助项目(03JK058)
关键词 模糊集 无限非概率测度熵 模糊互信息 fuzzy set infinite non-probabilistic measure entropy fuzzy mutual entropy
  • 相关文献

参考文献3

  • 1LUCA DE,TERMINI S. Definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972,20: 301-312.
  • 2CARNAP R. The Logical Foundations of Probability.2nd[M]. Chicago: University of Chicago Press, 1967.
  • 3朱雪龙.应用信息论[M].北京:清华大学出版社,2001..

同被引文献6

  • 1KULLBUCK S. Information Theory and Statistics [ M ]. New York : Wiley, 1959.
  • 2LIN J. Divergence measures based on the Shannon entroPY[J].IEEE Trans Information Theory, 1991,37 ( 1 ) :145-151.
  • 3SHANG X G, JIANG W S. A New Kind of Likelihood Function and its Applications Inform [ M ]. Chicago: University of Chicago Press, 1996.
  • 4DELUCA, TERMINI S. A definition of nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Inform and Control, 1972, 20:301-312.
  • 5SHANG Xiu-gang,JIANG Wei-sun.A note on fuzzy information measures[J].Pattern Recognition Letters,1997,18:425-432.
  • 6DRAGOMIR S S,GOH C J.Some bounds on entropy measures in information[J].Theory Appl Math Lett,1997,100):23-38.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部