期刊文献+

二维热弹性力学边界元法中几乎奇异积分的正则化 被引量:4

THE REGULARIZATION OF NEARLY SINGULAR INTEGRALS IN THE BEM OF TWO-DIMENSIONAL THERMOELASTICITY
下载PDF
导出
摘要 针对二维热弹性力学边界元法中近边界点的几乎强奇异和超奇异积分 ,采用一种通用算法 ,将其实施正则化 .该方法适用于线性单元 ,与近边界点邻近的单元上的积分采用正则化积分公式计算 ,远处单元的积分仍保持常规高斯积分 .算例证明了该法的有效性和精确性 . A new general algorithm is applied to the regularization of nearly strongly singular and hypersingular integrals in the boundary element method of two-dimensional thermoelasticity problems. For an inner point, if it is very close to the present integral element, the new regularization equations are applied to evaluating the nearly singular integrals. Otherwise, the standard Gauss integrals can still be used. Numerical examples demonstrate the effectiveness and accuracy of this algorithm.
出处 《固体力学学报》 CAS CSCD 北大核心 2004年第2期144-148,共5页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金 ( 10 2 72 0 3 9)资助
关键词 热弹性力学 边界元法 几乎奇异积分 正则化 高斯积分 BEM, nearly singular integrals, regularization, thermoelasticity
  • 相关文献

参考文献9

  • 1Brebbia C A, Telles J C, Wrobel L C. Boundary Element Techniques. Berlin, Heidelberg: Springer-Verlag, 1984
  • 2Sladek V, Sladek J. Boundary integral equation method in twodimensional thermoelasticity. Engng Anal, 1984, 1:135 - 148
  • 3Tanaka M, Sladek V, Sladek J. Regularization techniques applied to BEM. Appol Mech Rev, 1994, 47(10):457 -499
  • 4Huang Q, Cruse T A. Some notes on sigular integral techniques in boundary element analysis. Int J Num Methods Engng, 1993,36(3) :2643 - 2659
  • 5Ghosh N, Rajiyah H, Ghosh S, Mukherjee S. A new boundary element method formulation for linear elasticity. J of Appl Mech, 1986, 53(1):69-76
  • 6Granados J J, Gallego R. Regularization of nearly hypersingular integrals in the boundary element method. Engng Anal Boundary Elements, 2001, 25:165- 184
  • 7竹内洋一郎著 郭廷伟 李安定译.热应力[M].北京:科学出版社,1977..
  • 8王有成,刘钊,吴约.边界元技术中的全特解场方法[J].力学学报,1995,27(4):451-458. 被引量:20
  • 9牛忠荣,王秀喜,周焕林.边界元法计算近边界点参量的一个通用算法[J].力学学报,2001,33(2):275-283. 被引量:20

二级参考文献7

共引文献36

同被引文献52

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部