期刊文献+

圆柱型正交各向异性弹性楔的佯谬解

SOLUTION OF PARADOX IN CYLINDRICAL ORTHOGONAL ANISOTROPIC ELASTIC WEDGE
下载PDF
导出
摘要 圆柱型正交各向异性弹性楔体顶端受有集中力偶的经典解 ,当顶角满足一定关系时 ,其应力成为无穷大 ,这是个佯谬 .该文在哈密顿体系下将该问题进行重新求解 ,即利用极坐标各向异性弹性力学哈密顿体系 ,在原变量和其对偶变量组成的辛几何空间求解特殊本征值的约当型本征解 ,从而直接给出该佯谬问题的解析解 .结果再次表明经典力学中的弹性楔佯谬解对应的是哈密顿体系下辛几何的约当型解 . Classical solution of a cylindrical orthogonal anisotropic elastic wedge subjected to a concentrated couple at the vertex become infinite when the vertex angle satisfies certain definite relationships, this is a paradox. In this paper, the paradox is restudied under Hamiltonian system. The polar coordinate Hamiltonian system of anisotropic elasticity is used to solve the Jordan canonical form eigen solution for the special eigenvalue in symplectic space which consists of the original variables and their dual variables. In this way, solution of the paradox can be obtained directly. It shows further that solution of the special paradox in classical elasticity is just Jordan canonical form solutions in symplectic space under Hamiltonian system.
出处 《固体力学学报》 CAS CSCD 北大核心 2004年第2期155-158,共4页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金 ( 10 172 0 2 1) 教委博士点专项基金 ( 2 0 0 10 14 10 2 4)资助
关键词 圆柱型正交各向异性 弹性楔体 固体力学 约当型 辛几何 佯谬解 哈密顿体系 paradox, wedge, symplectic space, cylindrical orthogonal anisotropic, Jordan canonical form
  • 相关文献

参考文献6

二级参考文献38

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部