摘要
设μ是拟正则狄氏型的光滑测度,Aμ是其对应的非负连续可加泛函,UαAμ是Aμ的α位势算子,本文证明了测度μUαAμ关于μ的绝对连续性,并以R-N导数dμUαAμdμ刻划了μ具有有限能量积分的条件。
Let μ be a smooth measure with a quasi regular Dirichlet form, A μ be its non negative additive functional,and U α A μ be the α Potential operator of A μ.We can prove the absolute continuity of μ U α A μ with respect to μ which has the condition of a finite energy integral described by the Rodon Nikodym derivative d μU α A μ d μ .
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1997年第2期97-100,共4页
Journal of South China University of Technology(Natural Science Edition)
基金
华南理工大学科学基金资助
关键词
拟正则狄氏型
光滑测度
连续可加泛函
具有有限能量积分的测度
quasi regular Dirichlet form
smooth measure
continuous additive functional
measure with finite energy integral