摘要
根据壳体理论,采用HOB关于旋转薄壳的基本方程,对圆环壳在承受“风型”载荷时,通过适当的变换导出了带转向点的二阶应变量方程,并求得了逼近一渐近解,此解对不同环壳参数μ值,在包含=0的转向点在内的整个区域上都是一致有效的。用不同μ值环壳的C型波纹管作为实例计算说明了解的一致有效性。
The complex variable equations of second order with a turning pointfor toroidal shells under 'wind-type' loads are derived from basic equationsof revolving shells by Novozhiloy and approximate asymptotic solution isobtained. This solution is valid both for different values of parameter uand for the whole region containing =0. Two practical examples for Ctype bellows of different values of μ verify the validity of the solutions aregiven.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1989年第6期58-66,共9页
Journal of Tsinghua University(Science and Technology)
关键词
圆环壳
旋转壳
复变量方程
非轴对称荷载
逼近-渐近解
波纹管
壳体理论
toroidal shell, rotational shell,complex variable equation,non-axisymmetric load, approximate asymptotic solution