期刊文献+

变系数耦合KdV方程组的自B(a|¨)cklund变换及多重孤立波解 被引量:2

Auto-Backlund transformation and multi-solitonsolutions to a coupled KdV equationswith variable coefficients
下载PDF
导出
摘要 通过齐次平衡原则,得到变系数耦合KdV方程组的一个自Backlund变换.通过自Backlund变换,利用ε-展式法可以完全的得到变速多重孤立波解.作为解释,我们得到了方程的二孤子解. By using the homogeneous balance principle, an auto-Backlund transformation(BT) to a coupled KdV equations with general variable coefficients is derived. Based on the BT, the multi-soliton solutions with variable propagating speed to the equations can be completely obtained by using the ε-expansion method. As an illustrative example, we obtaind two-soliton solutions to the equations in detail.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第3期1-4,共4页 Journal of Lanzhou University(Natural Sciences)
基金 Suported by the Doctoral Foundation of the Ministry of Education(20020730020)and the Natural Science Foundation of Henan Province.
关键词 变系数耦合Kdv方程组 齐次平衡原则 自Backlund变换 ε-展式法 变速孤立波解 二孤子解 coupled KdV equations with variable coefficients homogeneous balance principle auto-Backlund transformation ε-expansion method solitary wave solutions with variant propagating speeds two-soliton solutions
  • 相关文献

参考文献14

  • 1Hirota R, Satsum J. Soliton solution of a coupled Korteweg-de Vires equation[J]. Phys Lett A, 1981,85: 407-408.
  • 2Grimshow R H J. Slowly varying solitary waves I.Korteweg-de Vires Equation[J]. Proc R Soc, 1979,368: 359-375.
  • 3Nirmala N, Vedan M J, Baby B V. AutoBacklund transformation, Lax pairs, and Painleve property of a variable coefficient Korteweg-de Vires equation[J]. J Math Phys, 1986, 27: 2640-2643.
  • 4Joshi N. Painleve property of general vairablecoeffcient versions of the Korteweg-de Vires and non-linear Schrodinger equations[J]. Phys Lett A,1987, 125: 456-460.
  • 5Hong W, Jung Y D. Auto-Backlund transformation and analytic solutions for general variablecoefficient KdV equation[J]. Phys Lett A, 1999, 257:149-152.
  • 6Wang M L, Wang Y M. A new Backlund transformation and multi-soliton solutions to the KdV equation with general variable coefficients[J]. Phys Lett A, 2001, 287: 211-216.
  • 7Wang M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett A, 1995, 199:169-172.
  • 8Wang M L. Exact solutions for a compound KdVBurgers equation[J]. Phys Lett A, 1996, 213: 279-287.
  • 9Wang M L, Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Phys Lett A, 1996, 216: 67-75.
  • 10Fan E G, Zhang H Q. New exact solutions to a system of coupled KdV equations [J]. Phys Lett A,1998, 245: 389-392.

同被引文献22

  • 1刘成仕.用试探方程法求变系数非线性发展方程的精确解[J].物理学报,2005,54(10):4506-4510. 被引量:31
  • 2毛杰健,杨建荣.变系数广义KdV方程新的类孤波解和精确解[J].物理学报,2007,56(9):5049-5053. 被引量:15
  • 3ANDERSON M H,ENSHER J R,MATTHEWS M R,et al.Observation of Bose-Einstein condensation in a dilute atomic vapor[J].Science,1995,269:198-201.
  • 4BRADLEY C C,SACKETT C A,TOLLETT J J,et al.Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions[J].Phys Rev Lett,1995,75:1687-1690.
  • 5DAVIS K B,MEWES M O,ANDREWS M R,et al.Bose-Einstein condensation in a gas of sodium atoms[J].Phys Rev Lett,1995,75:3969-3973.
  • 6WANG Ming-liang,ZHOU Yu-bin,LI Zhi-bin.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Physics Letters A,1996,216(6):67-75.
  • 7敖特根.构造变系数非线性发展方程精确解的一种方法[J].内蒙古大学学报(自然科学版),2007,38(5):597-600. 被引量:3
  • 8杨先林,唐驾时.两类变系数KdV方程的新精确孤波解[J].湖南大学学报(自然科学版),2007,34(12):72-75. 被引量:4
  • 9Mingliang Wang,Xiangzheng Li,Jinliang Zhang.The ( G ′ G )-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Physics Letters A.2007(4)
  • 10Zhang Sheng,Tong Jinglin,Wang Wei.A generalized(G’’/G)-expansion method for the mKdV equation with variable coefficients. Physics Letters A . 2008

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部