期刊文献+

时间序列模式挖掘的算法研究 被引量:4

An algorithm for time sequential pattern mining
下载PDF
导出
摘要 提出一种进行时间序列模式挖掘的算法 ,用于对大型数据库的海量数据分析 ,从中挖掘出超过用户给定支持度和置信度的时间序列 ,从而为用户的决策支持和趋势预测提供依据 .算法分为在数据中对于频繁项集的发现和频繁序列挖掘两个部分 ,排除不可能达到支持度和置信度阈值的项集 ,缩小了挖掘中的数据扫描范围 。 An algorithm for time sequential pattern mining is presented to analyze data in large database and find time sequences with higher support rates and higher confidence rates than user′s definition,providing support for user's decision making and trend forecast. The algorithm is composed of the detection of frequent term sets and mining of frequent sequences. The efficiency of data mining is improved by eliminating the term sets with lower support rate and confidence rate than the thresholds, and reducing the data scanning domain.
作者 韩明涛
出处 《山东大学学报(工学版)》 CAS 2004年第3期88-91,共4页 Journal of Shandong University(Engineering Science)
关键词 数据挖掘 时间序列 序列模式 data mining time sequence sequential pattern
  • 相关文献

参考文献2

二级参考文献1

  • 1Cheung D W,Proc Int Conf Data Engineering,1996年,106页

共引文献22

同被引文献52

  • 1李爱国,覃征.滑动窗口二次自回归模型预测非线性时间序列[J].计算机学报,2004,27(7):1004-1008. 被引量:12
  • 2肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 3HERNANDEZ-LEON R, PALANCAR J H, CARRASCO-OCHOA J A, et al. Algorithms for mining frequent itemsets in static and dynamic datasets [ J ]. Intelligent Data Analysis, 2010, 14(3) :419-435.
  • 4HAN J, KAMBER M. Data mining: concepts and techniques[M]. 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publisher, 2006.
  • 5PIATETSKY-SHAPIRO G. Data mining and knowledge discovery 1996 to 2005 : overcoming the hype and moving from "university" to "business" and "analytics" [ J ]. Data Mining Knowledge Discovery, 2007, 15 ( 1 ) : 99- 105.
  • 6CHIANG D A, WANG Y F, WANG Y H, et al. Mining disjunctive consequent association rules [J]. Applied Soft Computing, 2011, 11(2): 2129-2133.
  • 7AGRAWAL R, IMIELINSKI T, SWAMI A. Mining associations between sets of items in massive databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. Washington D C, USA: ACM Press, 1993. 207-216.
  • 8AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases [ C ]//Proceedings of the 20th International Conference on Very Large Data Bases. Santiago de Chile, Chile: Morgan Kaufmann Publisher, 1994 : 487-499.
  • 9SONG W, YANG B R, XU Z Y. Index-BitTableFI: an improved algorithm for mining frequent itemsets [ J ]. Knowledge-Based Systems, 2008, 21 (6): 507-513.
  • 10VREEKEN J, LEEUWEN M, SIEBES A. Krimp: mining itemsets that compress [J].Data Mining Knowledge Discovery, 2011, 23 ( 1 ) : 169-214.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部