期刊文献+

锥挠动意义下弱有效解的上半连续性

The Upper Semi-continuity on Their Solutions of Optimization Problems on The Cone
下载PDF
导出
摘要 运用通有的方法,研究了在锥变化和挠动的意义下向量优化问题解的上半连续性。 The purpose of this paper is to study the upper semi-continuity on their solutions of optimisation problems on the cone.
作者 陈源 向淑文
机构地区 贵州大学数学系
出处 《贵州工业大学学报(自然科学版)》 CAS 2004年第3期1-3,6,共4页 Journal of Guizhou University of Technology(Natural Science Edition)
关键词 上半连续性 有效解 弱有效解 集值映射 cone upper semi-continuity efficient solution weakly efficient solution set-valued map
  • 相关文献

参考文献10

  • 1M. K. Jr. Fort. Points of continuity of semi-continuous functions[J]. Publications Math, 1995, (2) :287 - 297.
  • 2S. W. Xiang, S. H. Xiang, Generic Stability on Weight Factors in Multiobjective Optimization Problems[J]. Pa-American Math,1997,7(12):79-84.
  • 3M.K. Jr. Fort. Points of continuity of semi-continuous functions[J]. Publications Math, 1951, (2): 100 - 102.
  • 4J. Yu, Essential equlibrium of n-person non-cooperative games[J]. Math. Economics, 1998, (4) :32 - 35.
  • 5J. H. Jiang, W. T. Wu. Essential equilibrium of n-person non-cooperative games[J]. Sci. Sinica, 1962, (11): 1307 - 1322.
  • 6E. Vam Damme, Stability and Perfeaceness of Nash Equilibria[ M]. Berlin: Spring Veriag, 1991.
  • 7R. Lucchetti and J. Revalski. Recent Development in Well-posed Variational Problems[ M]. Kluwer Netherland: Academic Publishers, 1995.
  • 8P.S. Kenderou, Most of the Optimization Problems Have Unique Solutions, Proceedings, Oberwolhfach Conference on Paremetric Optimization CB. Brosowki and F. Deutshc, eds7 [ M]. Basel: Birkhauser, 1984.
  • 9J. Yu. Essential Weak Efficient Solution in Multiobjective Optimization Problems[ J ]. Math. Anal. Appl., 1992, (166):230-235.
  • 10向淑文,杨辉.集值映象的图象拓扑与不动点的通有稳定性[J].应用数学学报,2001,24(2):221-226. 被引量:27

二级参考文献5

  • 1张石生.不动点理论及应用[M].重庆:重庆出版社,1985..
  • 2Tan K K,Bull Polish Acad Sci Math,1995年,43卷,119页
  • 3Tan K K,Nonlinear Anal TMA,1995年,25卷,163页
  • 4张石生,不动点理论及应用,1985年
  • 5Wu W T,Sci Sin,1962年,11卷,1307页

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部