摘要
Digital plant canopy imager and photosynthesis analyzer system were used to analyze thecharacteristics of canopy structure, photosynthetic physiology and micro-environmentalfactors at R4-R5 stage in different yielding soybean cultivars or lines with differentmaturities. The results showed that the common characteristics of high yielding soybeancultivars were high LAI, uniform foliage distribution in all horizontal directions, lessvariance of photosynthetic rate between top and bottom leaves in canopy and relativelyhigher photosynthetic rate of the whole canopy. All these characters combined in allresulted in higher canopy photosynthetic productivity, and pod number, seed number andseed weight per plant, especially pod and seed number in top and middle canopy wereincreased. The characters of high yielding canopy varied among maturities. Light interceptionwas more important to early cultivars. Less foliage inclination angle was benefit tointercept more solar energy during yield formation. As late soybean cultivars had a moreclosure canopy and higher LAI, greater foliage inclination angle in all layers of highyielding canopy made more solar radiation penetrate into canopy, which was beneficial toyield formation.
Digital plant canopy imager and photosynthesis analyzer system were used to analyze thecharacteristics of canopy structure, photosynthetic physiology and micro-environmentalfactors at R4-R5 stage in different yielding soybean cultivars or lines with differentmaturities. The results showed that the common characteristics of high yielding soybeancultivars were high LAI, uniform foliage distribution in all horizontal directions, lessvariance of photosynthetic rate between top and bottom leaves in canopy and relativelyhigher photosynthetic rate of the whole canopy. All these characters combined in allresulted in higher canopy photosynthetic productivity, and pod number, seed number andseed weight per plant, especially pod and seed number in top and middle canopy wereincreased. The characters of high yielding canopy varied among maturities. Light interceptionwas more important to early cultivars. Less foliage inclination angle was benefit tointercept more solar energy during yield formation. As late soybean cultivars had a moreclosure canopy and higher LAI, greater foliage inclination angle in all layers of highyielding canopy made more solar radiation penetrate into canopy, which was beneficial toyield formation.
基金
This research was granted by Heilongjiang Province Natural Science Foundation for Outstanding Young Scientist Award(JT01-02)
a part of Knowledge Innovation Project from Chinese Academy of Sciences(KZCX2-SW-416-3).