期刊文献+

二维空间中广义Davey-Stewartson系统整体解存在的最佳条件(英文)

Sharp Conditions of Global Existencefor the Generalized Davey-StewartsonSystem in Two Space Dimensions
下载PDF
导出
摘要 根据基态的特征 ,首先在二维空间中导出了广义Davey Stewartson系统解爆破和整体存在的最佳条件 ;其次得到了整体解存在的一个最佳充分条件 ;最后证明了当初值为多小时 ,该系统的整体解存在 . In terms of the characteristics of the ground state,we first derive out a sharp condition for blowup and global existence of the generalized Davey-Stewartson system in two space dimensions.Next we obtain a sharp sufficient condition of global existence.Finally,we also show that how small the initial data are,the global solution exists.
作者 甘在会 张健
出处 《应用数学》 CSCD 北大核心 2004年第3期360-365,共6页 Mathematica Applicata
基金 SupportedbyNationalNaturalScienceFoundation(10 2 710 84 )
关键词 最佳条件 广义Davey-Stewartson系统 基态 整体解 爆破 Sharp condition Generalized Davey-Stewartson system Ground state Global existence Blowup
  • 相关文献

参考文献9

  • 1Berestycki H, Gallouet T,Kavian O. Equation de champs scalaires euclidiens nonlineaires dans le plan[J]. C. R. Acad. Sci. Paris, 1983,297 (I):307-310.
  • 2Ginibre J,Velo G. On a class of nonlinear Schrodinger equations[J]. J. Funct. Anal. , 1979,32:1-71.
  • 3Ginibre J,Velo G. The global Cauchy problem for the nonlinear Schrodinger equation[J]. Ann. Inst. H.Poincare, Anal. Non Lineaire, 1985,2 : 309 - 327.
  • 4Cipolatii R. On the instability of ground states for a Davey-Stewartson system[J]. Ann. Inst. Henri Poincare,Phys. Theor. , 1993,58 : 85 - 104.
  • 5Davey A, Stewartson K. On three-dimensional packets of surface waves[J]. Proc. R. Soc. London A,1974,338:101-110.
  • 6Ghidaglia J M, Saut J C. On the initial value problem for the Davey-Stewartson systems[J]. Nonlinearity,1990,3:475-506.
  • 7Ohta M. Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in Rz [J]. Ann. Inst. Henri Poincare,1995,63:111- 117.
  • 8Ohta M. Instability of standing waves for the generalized Davey-Stewartson system[J]. Ann. Inst. Henr Poincare,1995,62 : 69 - 80.
  • 9Berestycki H, Cazenave T. Instabilit6 des 6tats stationnaires dans les fiquations de Schrodinger et de Klein-Gordon non lineaires[J]. C. R. Acad. Sci. Paris, 1981,293:489-492.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部