期刊文献+

圆环上的Hankel与Toeplitz型算子(英文)

Hankel-Toeplitz Type Operators on an Annulus
下载PDF
导出
摘要 令Ω是复平面上的圆环 ,则L2 (Ω) = ∞-∞Ak = ∞-∞ Ak 为其正交直和分解 .本文中我们定义了一类Hankel和Toeplitz型算子 ,研究了它们的紧性和Sp 性质 . Let Ω be an annulus in the complex plane.Then L2(Ω)=∞ -∞A k=∞ -∞ k is the orthogonal direct sum decomposition.ln this paper we define some kind of Hankel and Toeplitz type operators,and study the compactness and S p-criteria for them.
作者 田宏根
出处 《应用数学》 CSCD 北大核心 2004年第3期491-496,共6页 Mathematica Applicata
关键词 Hankel型算子 TOEPLITZ型算子 解析Besov空间 Sp准则 仿交换子 Hankel type operator Toeplitz type operator S p-criteria Analytic Besov space Paracommutator
  • 相关文献

参考文献12

  • 1Arazy J, Fisher S, Peetre J. Hankel operators on weighted Bergman spaces[J]. Amer. J. Math. , 1988,110(6) :989- 1054.
  • 2Arazy J, Fisher S, Peetre J. Hankel operators on planar domains[J]. Constr. Approx, 1990,6 (2):113-138.
  • 3He Jian-xun. Hankel and Toeplitz-type operators on the unit ball[J]. Math. Anal. Appl. , 2001,259 (2) :476-488.
  • 4Janson S. Hankel operators between weighted Bergman spaces[J]. Ark. Mat. , 1988,26:205 - 219.
  • 5Jiang Qingtang,Peng Lizhong. Toeplitz and Hankel type operators on an annulus[J]. Mathematica, 1994,41(2) :266-276.
  • 6Peller V. Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class Sp[J]. Integral Equations Oper. Theory, 1982,5 (2) : 244 - 272.
  • 7Peetre J. Hankel forms on multiply connected plane domains[J]. Complex Variables, 1988,10(2) : 129-139.
  • 8Peetre J ,Zhang G K. Projective structure on an annulus and Hankel forms[J]. Glasgow Math. ,J. , 1991,33:247-266.
  • 9Peng Lizhong. Toeplitz and Hankel type operators on Bergman space[J]. Mathematika, 1993,40 (2):345-356.
  • 10Peng Lizhong, Xu Chuanxiang. Jacobi polynomials and Toeplitz-Hankel type operators[J]. Complex Variables, 1993,23(1) :47-71.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部