期刊文献+

奇异积分在Herz型Sobolev空间上的有界性

Boundedness of sigular integral operator on Herz type space.
下载PDF
导出
摘要 采用Hardy空间的原子分解理论、Riesz-Thorin内插定理以及调和分析中的一些基本方法讨论了粗糙核奇异积分算子TΩ,βf(x)=p.v.∫Rnb(|y|)Ω(y′)|y|-n-βf(x-y)dy,当Ω∈Hr(Sn-1)r=n-1n-1+β时,是从Herz型Sobolev空间到Herz型空间有界的.其中b(.)是一个有界函数,β≥0,Ω是Sn-1上满足某些消失性条件的分布. The sigular integral operator T_(Ω,β)f(x)=p.v.∫_(R^n)b(|y|)Ω(y′)|y|^(-n-β)f(x-y)dy defined on all-test function f is studied, where b is a bounded function, β≥0,Ω(y′) is an integrable function on unit sphere S^(n-1) satisfying certain cancellation conditions. It is proved that, for 0<α<n1-1q,1<q<∞,0<p<∞,T_(Ω,β)(extends) to be a bounded operator from the Herz type Sobolev space to Herz type space with Ω being a distribution in the Hardy space H^r(S^(n-1)) with r=n-1n-1+β.
作者 狄艳媚
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 2004年第4期369-372,共4页 Journal of Zhejiang University(Science Edition)
基金 973项目(No.G1999075105) 浙江省自然科学基金(GrantNo.RC97017)资助项目.
关键词 HERZ型空间 Herz型Sobolev空间 奇异积分算子 (r ∞)原子 Herz type space Herz type Sobolev space singular integral operator (r,∞) atoms
  • 相关文献

参考文献11

  • 1CAL DER ON A P, ZYGMUND A. On sigular integrals[J]. Amer J Math, 1956,18(2) :289-309.
  • 2RICCI F,WEISS G. A characterization of H1(∑n-1) [J]. Proc Sympos Pure Math, 1979,35(1):289-294.
  • 3CHEN L. On sigular integrals [J]. Studia Math,1987,85(1):61-72.
  • 4NAMZI J. A Singular Integral[D]. Bloomington: Indiana University, 1984.
  • 5FAN D,PAN Y. Singular integral operators with rough kernels supported by subvarieties[J]. Amer J Math, 1997,119(4) :799-839.
  • 6CHEN Jie-cheng,FAN Da-shan,YING Yi-ming. Certain operators with rough singular kernels[J]. Canadian J Math, 2003,55(3) :504-532.
  • 7陆善镇,唐林,杨大春.Boundedness of commutators on homogeneous Herz spaces[J].Science China Mathematics,1998,41(10):1023-1033. 被引量:12
  • 8陆善镇,杨大春.Herz-type Sobolev and Bessel potential spaces and their applications[J].Science China Mathematics,1997,40(2):113-129. 被引量:14
  • 9DUOANDIKOETXEA J, RUBIO DE FRANCIA J L. Maximal and singular integral operators via fourier transform estimates[J]. Invent Math, 1986,84(3) :541-561.
  • 10周民强.调和分析讲义[M].北京:北京大学出版社,1992.ZHOU Min-qiang. Harmonic Analysis[M]. Beijing:Beijing University Press, 1992.

二级参考文献17

  • 1Coifman R R,Rochberg R,Guido Weiss.Annals of Mathematics. . 1976
  • 2Chanillo,S.A note on commutators, Indiana Univ. Mathematica Journal . 1982
  • 3Soria F,Weiss G.A remark on singular integrals and power weights. Indiana University Mathematics Journal . 1994
  • 4Stein E M.Note on singular integrals. Proceedings of the American Mathematical Society . 1957
  • 5Herz,C.LipschitzspacesandBernstein’stheoremonabsolutelyconvergentFouriertransforms,J. Math.Mech . 1968
  • 6Segovia C,Torrea J L.Higher order commutators for vector-valued Calder(?)n-Zygmund operators. Transactions of the American Mathematical Society . 1993
  • 7Muckenhoupt B,Wheeden R L.Weighted norm inequalities for singular and fractional integrals. Transactions of the American Mathematical Society . 1971
  • 8Stein,E M. Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals . 1993
  • 9Lu,S,Yang,D.ThecontinuityofcommutatorsonHerzspaces. MichiganMath.J . 1997
  • 10Hu,G,Lu,S,Yang,D.BoundednessofroughsingularintegraloperatorsonHerzspaces. . 1996

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部